317 research outputs found

    Spatial entanglement of twin quantum images

    Full text link
    We show that spatial entanglement of two twin images obtained by parametric down-conversion is complete, i.e. concerns both amplitude and phase. This is realised through a homodyne detection of these images which allows for measurement of the field quadrature components. EPR correlations are shown to exist between symmetrical pixels of the two images. The best possible correlation is obtained by adjusting the phase of the local oscillator field (LO) in the area of maximal amplification. The results for quadrature components hold unchanged even in absence of any input image i.e. for pure parametric fluorescence. In this case they are not related to intensity and phase fluctuations.Comment: 19 pages, 2 figure

    Coherent multi-mode dynamics in a Quantum Cascade Laser: Amplitude and Frequency-modulated Optical Frequency Combs

    Get PDF
    We cast a theoretical model based on Effective Semiconductor Maxwell-Bloch Equations and study the dynamics of a multi-mode mid-Infrared Quantum Cascade Laser in Fabry Perot with the aim to investigate the spontaneous generation of optical frequency combs. This model encompasses the key features of a semiconductor active medium such as asymmetric,frequency-dependent gain and refractive index as well as the phase-amplitude coupling of the field dynamics provided by the linewidth enhancement factor. Our numerical simulations are in excellent agreement with recent experimental results, showing broad ranges of comb formationin locked regimes, separated by chaotic dynamics when the field modes unlock. In the former case, we identify self-confined structures travelling along the cavity, while the instantaneous frequency is characterized by a linear chirp behaviour. In such regimes we show that OFC are characterized by concomitant and relevant amplitude and frequency modulation

    Retrieval of the Dielectric Properties of a Resonant Material in the Terahertz Region via Self-Detection Near Field Optical Microscopy

    Get PDF
    We present a numerical and analytical study of the self-detection scattering type near field optical microscopy (SD s-SNOM), a recently demonstrated technique based on a combination of self-mixing interferometry and scattering near-field microscopy. This scheme, which exploits a terahertz (THz) quantum cascade laser as both a laser source and detector, allows to investigate the optical properties of resonant materials in the THz range with resolution far beyond the diffraction limit. Our study, developed by using a modified version of the Lang-Kobayashi model, is focused on the weak feedback regime (Acket parameter C approximate to 10(-1)), where we derive an approximated method for the retrieval of the scattering coefficient of the SD s-SNOM configuration applied to a sample of Cesium Bromide (CsBr). These results were used in turn to derive the dielectric permittivity of the sample, reporting a good accuracy in the estimation of its phonon resonances

    Ballistic effectiveness of Zr-containing composite solid propellants as a function of binder nature and mass fraction

    Get PDF
    This paper considers the effects of binder mass fraction on the properties of energetic formulations based on zirconium and zirconium hydride. These ingredients, replacing aluminum in solid rocket motors with low vehicle performance coefficient, may increase the propellant ballistic effectiveness, thanks to the resulting higher density and notwithstanding their lower specific impulse. The propellant ballistic effectiveness is estimated via the vehicle velocity achieved using the propellant under analysis in a real vehicle. For each specific mission, the binder content can be varied to provide the optimal relationship between energetic and physical-mechanical properties, that is, one may sacrifice energy in favor of rheological and physicomechanical properties (increasing binder mass fraction), or vice versa

    Spatial entanglement of twin quantum images

    Get PDF
    We show that the spatial entanglement of two twin images obtained by parametric down conversion is complete, i.e., concerns both amplitude and phase. By considering a homodyne detection scheme, which allows comparison of field quadrature components of the two images pixel by pixel, Einstein-Podolsky Rosen correlations are shown to exist between symmetrical pixels of the two images. The best possible correlation is obtained by adjusting the phase profile of the local oscillator in the amplification area. The results for quadrature components hold even in the absence of any input image, i.e., for pure parametric fluorescence. In this case, they are not related to intensity and phase fluctuations

    Dynamics of Optical Frequency Combs in Ring and Fabry-Perot Quantum Cascade Lasers

    Get PDF
    Since the demonstration that multimode Quantum Cascade Lasers (QCLs) can operate as sources of Optical Frequency Combs (OFC) [1] , an extended class of theoretical models, based on standard two or three level Maxwell-Bloch equations, has been proposed to interpret such phenomenology

    The risk of collapse in abandoned mine sites: the issue of data uncertainty

    Get PDF
    Ground collapses over abandoned underground mines constitute a new environmental risk in the world. The high risk associated with subsurface voids, together with lack of knowledge of the geometric and geomechanical features of mining areas, makes abandoned underground mines one of the current challenges for countries with a long mining history. In this study, a stability analysis of Montevecchia marl mine is performed in order to validate a general approach that takes into account the poor local information and the variability of the input data. The collapse risk was evaluated through a numerical approach that, starting with some simplifying assumptions, is able to provide an overview of the collapse probability. The nal results is an easy-accessible-transparent summary graph that shows the collapse probability. This approach may be useful for public administrators called upon to manage this environmental risk. The approach tries to simplify this complex problem in order to achieve a roughly risk assessment, but, since it relies on just a small amount of information, any nal user should be aware that a comprehensive and detailed risk scenario can be generated only through more exhaustive investigations

    The risk of collapse in abandoned mine sites: the issue of data uncertainty

    Get PDF
    Ground collapses over abandoned underground mines constitute a new environmental risk in the world. The high risk associated with subsurface voids, together with lack of knowledge of the geometric and geomechanical features of mining areas, makes abandoned underground mines one of the current challenges for countries with a long mining history. In this study, a stability analysis of Montevecchia marl mine is performed in order to validate a general approach that takes into account the poor local information and the variability of the input data. The collapse risk was evaluated through a numerical approach that, starting with some simplifying assumptions, is able to provide an overview of the collapse probability. The nal results is an easy-accessible-transparent summary graph that shows the collapse probability. This approach may be useful for public administrators called upon to manage this environmental risk. The approach tries to simplify this complex problem in order to achieve a roughly risk assessment, but, since it relies on just a small amount of information, any nal user should be aware that a comprehensive and detailed risk scenario can be generated only through more exhaustive investigations

    Sound Water Masking to Match a Waterfront Soundscape with the Users’ Expectations: The Case Study of the Seafront in Naples, Italy

    Get PDF
    In the last decades, the soundscape approach has attracted the attention of architects and urban planners, leading them to incorporate the acoustic features into the enjoyment of their creations. One of the key aspects for an appreciated urban environment is to match the expectations of the users. In this study, the matching of the waterfront soundscape with the users’ expectations is evaluated by laboratory tests using semantic differential scales applied to reproduced virtual scenarios obtained adding different water sound pressure levels (SPLs) to the original in-situ setting. The tests were carried out by an immersive virtual reality (IVR) device, using 360◦ videos and spatial audio recorded in two sites of the waterfront in Naples, Italy. The scenarios were presented to the participants according to three experimental protocols, namely audio-only (A), video-only (V), and simultaneous audio-video (AV) reproduction. The examined different acoustic scenarios were the original one recorded in situ and others obtained adding seawater sounds at SPL increments of 5 dB. The results show that all the scenarios with water sounds added are rated more pleasant than the original one for the audio-only scenario. When video and audio are displayed simultaneously, two scenarios are more pleasant than the original one, likely because there is a need for coherence between the water sound SPL heard and the visible noise sources. Sounds coherent with the type of shore show a higher matching with expectations and pleasantness appraisals, rather than those that are uncoherent with the layout scenario

    Facile and sustainable functionalization of graphene layers with pyrrole compounds

    Get PDF
    A facile and sustainable functionalization of graphene layers was performed with pyrrole compounds (PyC) prepared through the Paal–Knorr reaction of a primary amine with 2,5-hexanedione. A good number of primary amines were used: hexanamine, dodecanamine, octadecanamine, 2-aminoacetic acid, 2-amino-1,3-propanediol, 3-(triethoxysilyl)propan-1-amine. The reactions were characterized by good yield, up to 96 %, and indeed satisfactory atom efficiency, up to 80 %. The functionalization of graphene layers was obtained by mixing PyC with a high surface area graphite and heating at a temperature range from 130 °C to 150 °C for 3 h. The yield of functionalization reaction was larger than 60 % and also up to about 90 % for the pyrrole compounds from dodecanamine and 2-amino-1,3-propanediol, respectively. The cycloaddition reaction between the graphene layers and the pyrrole compound, oxidized in two position, is proposed as working hypothesis to account for such efficient functionalization. Raman spectroscopy revealed that the structure of the graphitic substrate remained substantially unaltered, after the reaction. Stable dispersions of HSAG adducts with different PyC were prepared in solvents with different solubility parameters and HRTEM analysis showed the presence of aggregates of only few layers of graphene. Qualitative results of dispersion tests were used to calculate the Hansen sphere for the HSAG adduct with the pyrrole compound based on dodecanamine so to provide a first estimate of its Hansen solubility parameters. This work paves the way for the facile and sustainable modification of the solubility parameters of graphene layers and for the predictive assessment of their compatibility with different environments
    • …
    corecore