30 research outputs found
Microencapsulated foods as a functional delivery vehicle for omega-3 fatty acids: a pilot study
It is well established that the ingestion of the omega-3 (N3) fatty acids docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) positively benefit a variety of health indices. Despite these benefits the actual intake of fish derived N3 is relatively small in the United States. The primary aim of our study was to examine a technology capable of delivering omega-3 fatty acids in common foods via microencapsulation (MicroN3) in young, healthy, active participants who are at low risk for cardiovascular disease. Accordingly, we randomized 20 participants (25.4 ± 6.2 y; 73.4 ± 5.1 kg) to receive the double blind delivery of a placebo-matched breakfast meal (~2093 kJ) containing MicroN3 (450–550 mg EPA/DHA) during a 2-week pilot trial. Overall, we observed no differences in overall dietary macronutrient intake other than the N3 delivery during our treatment regimen. Post-test ANOVA analysis showed a significant elevation in mean (SE) plasma DHA (91.18 ± 9.3 vs. 125.58 ± 11.3 umol/L; P < 0.05) and a reduction in triacylglycerols (89.89 ± 12.8 vs. 80.78 ± 10.4 mg/dL; P < 0.05) accompanying the MicroN3 treatment that was significantly different from placebo (P < 0.05). In post study interviews, participants reported that the ingested food was well-tolerated, contained no fish taste, odor or gastrointestinal distress accompanying treatment. The use of MicroN3 foods provides a novel delivery system for the delivery of essential fatty acids. Our study demonstrates that MicroN3 foods promote the absorption of essential N3, demonstrate bioactivity within 2 weeks of ingestion and are well tolerated in young, active participants who are at low risk for cardiovascular disease
Novel Sulfated Polysaccharides Disrupt Cathelicidins, Inhibit RAGE and Reduce Cutaneous Inflammation in a Mouse Model of Rosacea
Rosacea is a common disfiguring skin disease of primarily Caucasians characterized by central erythema of the face, with telangiectatic blood vessels, papules and pustules, and can produce skin thickening, especially on the nose of men, creating rhinophyma. Rosacea can also produce dry, itchy eyes with irritation of the lids, keratitis and corneal scarring. The cause of rosacea has been proposed as over-production of the cationic cathelicidin peptide LL-37.We tested a new class of non-anticoagulant sulfated anionic polysaccharides, semi-synthetic glycosaminoglycan ethers (SAGEs) on key elements of the pathogenic pathway leading to rosacea. SAGEs were anti-inflammatory at ng/ml, including inhibition of polymorphonuclear leukocyte (PMN) proteases, P-selectin, and interaction of the receptor for advanced glycation end-products (RAGE) with four representative ligands. SAGEs bound LL-37 and inhibited interleukin-8 production induced by LL-37 in cultured human keratinocytes. When mixed with LL-37 before injection, SAGEs prevented the erythema and PMN infiltration produced by direct intradermal injection of LL-37 into mouse skin. Topical application of a 1% (w/w) SAGE emollient to overlying injected skin also reduced erythema and PMN infiltration from intradermal LL-37.Anionic polysaccharides, exemplified by SAGEs, offer potential as novel mechanism-based therapies for rosacea and by extension other LL-37-mediated and RAGE-ligand driven skin diseases
Early pregnancy urinary biomarkers of fatty acid and carbohydrate metabolism in pregnancies complicated by gestational diabetes.
AIMS: Alterations in organic acid biomarkers from fatty acid and carbohydrate metabolism have been documented in type 2 diabetes patients. However, their association with gestational diabetes mellitus (GDM) is largely unknown. METHODS: Participants were 25 GDM cases and 25 non-GDM controls. Biomarkers of fatty acid (adipate, suberate and ethylmalonate) and carbohydrate (pyruvate, l-lactate and β-hydroxybutyrate) metabolism were measured in maternal urine samples collected in early pregnancy (17 weeks) using liquid chromatography-mass spectrometry methods. Logistic regression were used to calculate odds ratios (OR) and 95% confidence intervals (CI). RESULTS: GDM cases and controls differed in median urinary concentrations of ethylmalonate (3.0 vs. 2.3μg/mg creatinine), pyruvate (7.4 vs. 2.1μg/mg creatinine), and adipate (4.6 vs. 7.3μg/mg creatinine) (all p-values <0.05). Women in the highest tertile for ethylmalonate or pyruvate concentrations had 11.4-fold (95%CI 1.10-117.48) and 3.27-fold (95%CI 0.72-14.79) increased risk of GDM compared with women in the lowest tertile for ethylmalonate and pyruvate concentrations, respectively. Women in the highest tertile for adipate concentrations, compared with women in the lowest tertile, had an 86% reduction in GDM risk (95%CI 0.02-0.97). CONCLUSIONS: These preliminary findings underscore the importance of altered fatty acid and carbohydrate metabolism in the pathogenesis of GDM
Recommended from our members
Endogenous Nitric Oxide Synthase Inhibitors, Arterial Hemodynamics, and Subclinical Vascular Disease : The PREVENCION Study
Reengineering CCA-adding enzymes to function as (U,G)- or dCdCdA-adding enzymes or poly(C,A) and poly(U,G) polymerases
CCA-adding enzymes build and repair the 3′-terminal CCA sequence of tRNA. These unusual RNA polymerases use either a ribonucleoprotein template (class I) or pure protein template (class II) to form mock base pairs with the Watson–Crick edges of incoming CTP and ATP. Guided by the class II Bacillus stearothermophilus CCA-adding enzyme structure, we introduced mutations designed to reverse the polarity of hydrogen bonds between the nucleobases and protein template. We were able to transform the CCA-adding enzyme into a (U,G)-adding enzyme that incorporates UTP and GTP instead of CTP and ATP; we transformed the related Aquifex aeolicus CC- and A-adding enzymes into UU- and G-adding enzymes and Escherichia coli poly(A) polymerase into a poly(G) polymerase; and we transformed the B. stearothermophilus CCA-adding enzyme into a poly(C,A) polymerase by mutations in helix J that appear, based on the apoenzyme structure, to sterically limit addition to CCA. We also transformed the B. stearothermophilus CCA-adding enzyme into a dCdCdA-adding enzyme by mutating an arginine that interacts with the incoming ribose 2′ hydroxyl. Most importantly, we found that mutations in helix J can affect the specificity of the nucleotide binding site some 20 Å away, suggesting that the specificity of both class I and II enzymes may be dictated by an intricate network of hydrogen bonds involving the protein, incoming nucleotide, and 3′ end of the tRNA. Collaboration between RNA and protein in the form of a ribonucleoprotein template may help to explain the evolutionary diversity of the nucleotidyltransferase family