60 research outputs found

    Vesicoureteral Reflux, Reflux Nephropathy, and End-Stage Renal Disease

    Get PDF
    Objective. To review the contribution of vesicoureteral reflux and reflux nephropathy to end-stage renal disease. Data Source. Published research articles and publicly available registries. Results. Vesicoureteral reflux (VUR) is commonly identified in pediatric patients and can be associated with reflux nephropathy (RN), chronic kidney disease (CKD), and rarely end-stage renal disease (ESRD). Patients with reduced GFR, bilateral disease, grade V VUR, proteinuria, and hypertension are more likely to progress to CKD and ESRD. Because progression to ESRD is rare in VUR and often requires many decades to develop, there are limited prospective, randomized, controlled trials available to direct therapy to prevent progression to ESRD. Conclusions. Identification of patients with increased risk of progression to CKD and ESRD should be the goal of clinical, biochemical, and radiological evaluation of patients with VUR. Treatment of patients with VUR should be directed at preventing new renal injury and preserving renal function

    Afadin orients cell division to position the tubule lumen in developing renal tubules

    Get PDF
    In many types of tubules, continuity of the lumen is paramount to tubular function, yet how tubules generate lumen continuity in vivo is not known. We recently found the F-actin binding protein Afadin is required for lumen continuity in developing renal tubules, though its mechanism of action remains unknown. Here we demonstrate Afadin is required for lumen continuity by orienting the mitotic spindle during cell division. Using an in vitro 3D cyst model, we find Afadin localizes to the cell cortex adjacent to the spindle poles and orients the mitotic spindle. In tubules, cell division may be oriented relative to two axes, longitudinal and apical-basal. Unexpectedly, in vivo examination of early stage developing nephron tubules reveals cell division is not oriented in the longitudinal (or planar polarized) axis. However, cell division is oriented perpendicular to the apical-basal axis. Absence of Afadin in vivo leads to misorientation of apical-basal cell division in nephron tubules. Together these results support a model whereby Afadin determines lumen placement by directing apical-basal spindle orientation, which generates a continuous lumen and normal tubule morphogenesis

    Increased Neural Activity of a Mushroom Body Neuron Subtype in the Brains of Forager Honeybees

    Get PDF
    Honeybees organize a sophisticated society, and the workers transmit information about the location of food sources using a symbolic dance, known as ‘dance communication’. Recent studies indicate that workers integrate sensory information during foraging flight for dance communication. The neural mechanisms that account for this remarkable ability are, however, unknown. In the present study, we established a novel method to visualize neural activity in the honeybee brain using a novel immediate early gene, kakusei, as a marker of neural activity. The kakusei transcript was localized in the nuclei of brain neurons and did not encode an open reading frame, suggesting that it functions as a non-coding nuclear RNA. Using this method, we show that neural activity of a mushroom body neuron subtype, the small-type Kenyon cells, is prominently increased in the brains of dancer and forager honeybees. In contrast, the neural activity of the two mushroom body neuron subtypes, the small-and large-type Kenyon cells, is increased in the brains of re-orienting workers, which memorize their hive location during re-orienting flights. These findings demonstrate that the small-type Kenyon cell-preferential activity is associated with foraging behavior, suggesting its involvement in information integration during foraging flight, which is an essential basis for dance communication

    Role of Homer Proteins in the Maintenance of Sleep-Wake States

    Get PDF
    Sleep is an evolutionarily conserved process that is linked to diurnal cycles and normal daytime wakefulness. Healthy sleep and wakefulness are integral to a healthy lifestyle; this occurs when an organism is able to maintain long bouts of both sleep and wake. Homer proteins, which function as adaptors for group 1 metabotropic glutamate receptors, have been implicated in genetic studies of sleep in both Drosophila and mouse. Drosophila express a single Homer gene product that is upregulated during sleep. By contrast, vertebrates express Homer as both constitutive and immediate early gene (H1a) forms, and H1a is up-regulated during wakefulness. Genetic deletion of Homer in Drosophila results in fragmented sleep and in failure to sustain long bouts of sleep, even under increased sleep drive. However, deletion of Homer1a in mouse results in failure to sustain long bouts of wakefulness. Further evidence for the role of Homer1a in the maintenance of wake comes from the CREB alpha delta mutant mouse, which displays a reduced wake phenotype similar to the Homer1a knockout and fails to up-regulate Homer1a upon sleep loss. Homer1a is a gene whose expression is induced by CREB. Sustained behaviors of the sleep/wake cycle are created by molecular pathways that are distinct from those for arousal or short bouts, and implicate an evolutionarily-conserved role for Homer in sustaining these behaviors

    Nectin proteins are expressed at early stages of nephrogenesis and play a role in renal epithelial cell morphogenesis

    No full text
    Development of the nephron requires conversion of the metanephric mesenchyme into tubular epithelial structures with specifically organized intercellular junctions. The nectin proteins are a family of transmembrane proteins that dimerize to form intercellular junctional complexes between epithelial cells. In this study, we demonstrate that nectin junctions appear during the earliest stages of epithelial cell morphogenesis in the murine nephron concurrently with the transition of mesenchymal cells into epithelial cells. We have defined the role of nectin during epithelial cell morphogenesis by studying nectin in a three-dimensional culture of Madin-Darby canine kidney (MDCK) cells. In a three-dimensional culture of MDCK cells grown in purified type 1 collagen, expression of a dominant negative form of nectin causes disruption of the formation of cell polarity and disruption of tight junction (TJ) formation, as measured by zonula occludens-1 (ZO-1) localization. In MDCK cells cultured in Matrigel, exogenous expression of nectin-1 causes disruption of normal epithelial cell cyst formation and decreased apoptosis. These data demonstrate that nectins play an important role in normal epithelial cell morphogenesis and may play a role in mesenchymal-to-epithelial transition during nephrogenesis by providing an antiapoptotic signal and promoting the formation of TJs and cell polarity

    De novo lumen formation and elongation in the developing nephron: a central role for afadin in apical polarity.

    No full text
    A fundamental process in biology is the de novo formation and morphogenesis of polarized tubules. Although these processes are essential for the formation of multiple metazoan organ systems, little is known about the molecular mechanisms that regulate them. In this study, we have characterized several steps in tubule formation and morphogenesis using the mouse kidney as a model system. We report that kidney mesenchymal cells contain discrete Par3-expressing membrane microdomains that become restricted to an apical domain, coinciding with lumen formation. Once lumen formation has been initiated, elongation occurs by simultaneous extension and additional de novo lumen generation. We demonstrate that lumen formation and elongation require afadin, a nectin adaptor protein implicated in adherens junction formation. Mice that lack afadin in nephron precursors show evidence of Par3-expressing membrane microdomains, but fail to develop normal apical-basal polarity and generate a continuous lumen. Absence of afadin led to delayed and diminished integration of nectin complexes and failure to recruit R-cadherin. Furthermore, we demonstrate that afadin is required for Par complex formation. Together, these results suggest that afadin acts upstream of the Par complex to regulate the integration and/or coalescence of membrane microdomains, thereby establishing apical-basal polarity and lumen formation/elongation during kidney tubulogenesis

    A modular microfluidic bioreactor with improved throughput for evaluation of polarized renal epithelial cells.

    No full text
    Most current microfluidic cell culture systems are integrated single use devices. This can limit throughput and experimental design options, particularly for epithelial cells, which require significant time in culture to obtain a fully differentiated phenotype. In addition, epithelial cells require a porous growth substrate in order to fully polarize their distinct apical and basolateral membranes. We have developed a modular microfluidic system using commercially available porous culture inserts to evaluate polarized epithelial cells under physiologically relevant fluid flow conditions. The cell-support for the bioreactor is a commercially available microporous membrane that is ready to use in a 6-well format, allowing for cells to be seeded in advance in replicates and evaluated for polarization and barrier function prior to experimentation. The reusable modular system can be easily assembled and disassembled using these mature cells, thus improving experimental throughput and minimizing fabrication requirements. The bioreactor consists of an apical microfluidic flow path and a static basolateral chamber that is easily accessible from the outside of the device. The basolateral chamber acts as a reservoir for transport across the cell layer. We evaluated the effect of initiation of apical shear flow on short-term intracellular signaling and mRNA expression using primary human renal epithelial cells (HRECs). Ten min and 5 h after initiation of apical fluid flow over a stable monolayer of HRECs, cells demonstrated increased phosphorylation of extracellular signal-related kinase and increased expression of interleukin 6 (IL-6) mRNA, respectively. This bioreactor design provides a modular platform with rapid experimental turn-around time to study various epithelial cell functions under physiologically meaningful flow conditions
    corecore