20,724 research outputs found

    Spontaneous Breaking of Gauge Groups to Discrete Symmetries

    Full text link
    Many models of beyond Standard Model physics connect flavor symmetry with a discrete group. Having this symmetry arise spontaneously from a gauge theory maintains compatibility with quantum gravity and can be used to systematically prevent anomalies. We minimize a number of Higgs potentials that break gauge groups to discrete symmetries of interest, and examine their scalar mass spectra.Comment: 45 page

    The Cepheid Distance Scale: recent progress in fundamental techniques

    Get PDF
    This review examines progress on the Pop I, fundamental-mode Cepheid distance scale with emphasis on recent developments in geometric and quasi-geometric techniques for Cepheid distance determination. Specifically I examine the surface brightness method, interferometric pulsation method, and trigonometric measurements. The three techniques are found to be in excellent agreement for distance measures in the Galaxy. The velocity p-factor is of crucial importance in the first two of these methods. A comparison of recent determinations of the p-factor for Cepheids demonstrates that observational measures of p and theoretical predictions agree within their uncertainties for Galactic Cepheids.Comment: An invited review at the Santa Fe, NM, conference -- Stellar Pulsation: Challenges for Theory and Observation; May 31-June 5, 2009 10 pages, 8 figure

    The Use of Multi-beam Sonars to Image Bubbly Ship Wakes

    Get PDF
    During the past five years, researchers at Penn State University (PSU) have used upward-looking multi-beam (MB) sonar to image the bubbly wakes of surface ships. In 2000, a 19-beam, 5° beam width, 120° sector, 250 kHz MB sonar integrated into an autonomous vehicle was used to obtain a first-of-a-kind look at the three-dimensional variability of bubbles in a large ship wake. In 2001 we acquired a Reson 8101 MB sonar, which operates at 240 kHz and features 101-1.5º beams spanning a 150º sector. In July 2002, the Reson sonar was deployed looking upward from a 1.4 m diameter buoy moored at 29.5 m depth in 550 m of water using three anchor lines. A fiber optic cable connected the sonar to a support ship 500 m away. Images of the wake of a small research vessel provided new information about the persistence of bubble clouds in the ocean. An important goal is to use the MB sonar to estimate wake bubble distributions, as has been done with single beam sonar. Here we show that multipath interference and strong, specular reflections from the sea surface adversely affect the use of MB sonars to unambiguously estimate wake bubble distributio

    Consistency in statistical moments as a test for bubble cloud clustering

    Get PDF
    Frequency dependent measurements of attenuation and/or sound speed through clouds of gas bubbles in liquids are often inverted to find the bubble size distribution and the void fraction of gas. The inversions are often done using an effective medium theory as a forward model under the assumption that the bubble positions are Poisson distributed (i.e., statistically independent). Under circumstances in which single scattering does not adequately describe the pressure field, the assumption of independence in position can yield large errors when clustering is present, leading to errors in the inverted bubble size distribution. It is difficult, however, to determine the existence of clustering in bubble clouds without the use of specialized acoustic or optical imaging equipment. A method is described here in which the existence of bubble clustering can be identified by examining the consistency between the first two statistical moments of multiple frequency acoustic measurements
    corecore