14 research outputs found
Vibronic Structure in Room Temperature Photoluminescence of the Halide Perovskite Cs3Bi2Br9
We report a study on the optical properties of the layered polymorph of vacancy-ordered triple perovskite Cs3Bi2Br9. The electronic structure, determined from density functional theory calculations, shows the top of the valence band and bottom of the conduction band minima are, unusually, dominated by Bi s and p states, respectively. This produces a sharp exciton peak in the absorption spectra with a binding energy that was approximated to be 940 meV, which is substantially stronger than values found in other halide perovskites and, instead, more closely reflects values seen in alkali halide crystals. This large binding energy is indicative of a strongly localized character and results in a highly structured emission at room temperature as the exciton couples to vibrations in the lattice
The transition state of the f + h2 reaction.
The transition state region of the F + H(2) reaction has been studied by photoelectron spectroscopy of FH(2)(-). New para and normal FH(2)(-)photoelectron spectra have been measured in refined experiments and are compared here with exact three-dimensional quantum reactive scattering simulations that use an accurate new ab initio potential energy surface for F + H(2). The detailed agreement that is obtained between this fully ab initio theory and experiment is unprecedented for the F + H(2) reaction and suggests that the transition state region of the F + H(2) potential energy surface has finally been understood quantitatively
Role of water in electron-initiated processes and radical chemistry: Issues and scientific advances
An understanding of electron-initiated processes in aqueous systems and the subsequent radical chemistry these processes induce is critical in diverse fields such as waste remediation and environmental cleanup, radiation processing, nuclear reactors, and medical diagnosis and therapy. This review outlines the opportunity in the scientific community to create a research thrust aimed at developing a fundamental understanding of electron-driven processes in aqueous systems. Successful research programs in radiation chemistry and condensed-phase chemical physics provide the foundation to build such an effort