904 research outputs found

    Accretion of a Symmetry Breaking Scalar Field by a Schwarzschild Black Hole

    Full text link
    We simulate the behaviour of a Higgs-like field in the vicinity of a Schwarzschild black hole using a highly accurate numerical framework. We consider both the limit of the zero-temperature Higgs potential, and a toy model for the time-dependent evolution of the potential when immersed in a slowly cooling radiation bath. Through these numerical investigations, we aim to improve our understanding of the non-equilibrium dynamics of a symmetry breaking field (such as the Higgs) in the vicinity of a compact object such as a black hole. Understanding this dynamics may suggest new approaches for studying properties of scalar fields using black holes as a laboratory.Comment: 16 pages, 5 figure

    Cosmic bubble and domain wall instabilities III: The role of oscillons in three-dimensional bubble collisions

    Get PDF
    We study collisions between pairs of bubbles nucleated in an ambient false vacuum. For the first time, we include the effects of small initial (quantum) fluctuations around the instanton profiles describing the most likely initial bubble profile. Past studies of this problem neglect these fluctuations and work under the assumption that the collisions posess an exact SO(2,1) symmetry. We use three-dimensional lattice simulations to demonstrate that for double-well potentials, small initial perturbations to this symmetry can be amplified as the system evolves. Initially the amplification is well-described by linear perturbation theory around the SO(2,1) background, but the onset of strong nonlinearities amongst the fluctuations quickly leads to a drastic breaking of the original SO(2,1) symmetry and the production of oscillons in the collision region. We explore several single-field models, and we find it is hard to both realize inflation inside of a bubble and produce oscillons in a collision. Finally, we extend our results to a simple two-field model. The additional freedom allowed by the second field allows us to construct viable inflationary models that allow oscillon production in collisions. The breaking of the SO(2,1) symmetry allows for a new class of observational signatures from bubble collisions that do not posess azimuthal symmetry, including the production of gravitational waves which cannot be supported by an SO(2,1) spacetime.Comment: 35 pages + references, 26 figures. Submitted to JCAP. v2: Acknowledgments updates, no other change

    Cosmic bubble and domain wall instabilities I: parametric amplification of linear fluctuations

    Get PDF
    This is the first paper in a series where we study collisions of nucleated bubbles taking into account the effects of small initial (quantum) fluctuations in a fully 3+1-dimensional setting. In this paper, we consider the evolution of linear fluctuations around highly symmetric though inhomogeneous backgrounds. We demonstrate that a large degree of asymmetry develops over time from tiny fluctuations superposed upon planar and SO(2,1) symmetric backgrounds. These fluctuations arise from zero-point vacuum oscillations, so excluding them by enforcing a spatial symmetry is inconsistent in a quantum treatment. We consider the limit of two colliding planar walls, with fluctuation mode functions characterized by the wavenumber transverse to the collision direction and a longitudinal shape along the collision direction xx, which we solve for. Initially, the fluctuations obey a linear wave equation with a time- and space-dependent mass meff(x,t)m_{eff}(x,t). When the walls collide multiple times, meffm_{eff} oscillates in time. We use Floquet theory to study the fluctuations and generalize techniques familiar from preheating to the case with many coupled degrees of freedom. This inhomogeneous case has bands of unstable transverse wavenumbers kk_\perp with exponentially growing mode functions. From the detailed spatial structure of the mode functions in xx, we identify both broad and narrow parametric resonance generalizations of the homogeneous meff(t)m_{eff}(t) case of preheating. The unstable kk_\perp modes are longitudinally localized, yet can be described as quasiparticles in the Bogoliubov sense. We define an effective occupation number to show they are created in bursts for the case of well-defined collisions in the background. The transverse-longitudinal coupling accompanying nonlinearity radically breaks this localized particle description, with nonseparable 3D modes arising.Comment: 37 pages + references, 20 figures, submitted to JCA

    Cosmic bubble and domain wall instabilities II: Fracturing of colliding walls

    Get PDF
    We study collisions between nearly planar domain walls including the effects of small initial nonplanar fluctuations. These perturbations represent the small fluctuations that must exist in a quantum treatment of the problem. In a previous paper, we demonstrated that at the linear level a subset of these fluctuations experience parametric amplification as a result of their coupling to the planar symmetric background. Here we study the full three-dimensional nonlinear dynamics using lattice simulations, including both the early time regime when the fluctuations are well described by linear perturbation theory as well as the subsequent stage of fully nonlinear evolution. We find that the nonplanar fluctuations have a dramatic effect on the overall evolution of the system. Specifically, once these fluctuations begin to interact nonlinearly the split into a planar symmetric part of the field and the nonplanar fluctuations loses its utility. At this point the colliding domain walls dissolve, with the endpoint of this being the creation of a population of oscillons in the collision region. The original (nearly) planar symmetry has been completely destroyed at this point and an accurate study of the system requires the full three-dimensional simulation.Comment: 23 pages + references, 13 figures. Submitted to JCAP. v2: Acknowledgements updated, no other change

    Constraining cosmological ultra-large scale structure using numerical relativity

    Get PDF
    Cosmic inflation, a period of accelerated expansion in the early universe, can give rise to large amplitude ultra-large scale inhomogeneities on distance scales comparable to or larger than the observable universe. The cosmic microwave background (CMB) anisotropy on the largest angular scales is sensitive to such inhomogeneities and can be used to constrain the presence of ultra-large scale structure (ULSS). We numerically evolve nonlinear inhomogeneities present at the beginning of inflation in full General Relativity to assess the CMB quadrupole constraint on the amplitude of the initial fluctuations and the size of the observable universe relative to a length scale characterizing the ULSS. To obtain a statistically significant number of simulations, we adopt a toy model in which inhomogeneities are injected along a preferred direction. We compute the likelihood function for the CMB quadrupole including both ULSS and the standard quantum fluctuations produced during inflation. We compute the posterior given the observed CMB quadrupole, finding that when including gravitational nonlinearities, ULSS curvature perturbations of order unity are allowed by the data, even on length scales not too much larger than the size of the observable universe. Our results illustrate the utility and importance of numerical relativity for constraining early universe cosmology.Comment: 14 pages, 6 figures v3: Clarifications added regarding the generality of results - conclusions unchanged, version accepted for publication in PRD, v2: updated with minor clarifications, submitte

    The Impact of Peculiar Velocities on the Estimation of the Hubble Constant from Gravitational Wave Standard Sirens

    Get PDF
    In this work we investigate the systematic uncertainties that arise from the calculation of the peculiar velocity when estimating the Hubble constant (H0H_0) from gravitational wave standard sirens. We study the GW170817 event and the estimation of the peculiar velocity of its host galaxy, NGC 4993, when using Gaussian smoothing over nearby galaxies. NGC 4993 being a relatively nearby galaxy, at 40 Mpc\sim 40 \ {\rm Mpc} away, is subject to a significant effect of peculiar velocities. We demonstrate a direct dependence of the estimated peculiar velocity value on the choice of smoothing scale. We show that when not accounting for this systematic, a bias of 200 km s1\sim 200 \ {\rm km \ s ^{-1}} in the peculiar velocity incurs a bias of $\sim 4 \ {\rm km \ s ^{-1} \ Mpc^{-1}}ontheHubbleconstant.WeformulateaBayesianmodelthataccountsforthedependenceofthepeculiarvelocityonthesmoothingscaleandbymarginalisingoverthisparameterweremovetheneedforachoiceofsmoothingscale.Theproposedmodelyields on the Hubble constant. We formulate a Bayesian model that accounts for the dependence of the peculiar velocity on the smoothing scale and by marginalising over this parameter we remove the need for a choice of smoothing scale. The proposed model yields H_0 = 68.6 ^{+14.0}_{-8.5}~{\rm km\ s^{-1}\ Mpc^{-1}}$. We demonstrate that under this model a more robust unbiased estimate of the Hubble constant from nearby GW sources is obtained.Comment: 9 pages, 5 figure

    Restricted Quantum Theory of Affine Toda Solitons

    Full text link
    We quantise the reduced theory obtained by substituting the soliton solutions of affine Toda theory into its symplectic form. The semi-classical S-matrix is found to involve the classical Euler dilogarithm.Comment: 10pp, LaTe

    Dimensional deformation of sine-Gordon breathers into oscillons

    Full text link
    Oscillons are localized field configurations oscillating in time with lifetimes orders of magnitude longer than their oscillation period. In this paper, we simulate non-travelling oscillons produced by deforming the breather solutions of the sine-Gordon model. Such a deformation treats the dimensionality of the model as a real parameter to produce spherically symmetric oscillons. After considering the post-transient oscillation frequency as a control parameter, we probe the initial parameter space to show how the availability of oscillons depends on the number of spatial dimensions. For small dimensional deformations, our findings are consistent with the lack of a minimal amplitude bound to form oscillons. In D2D\gtrsim 2 spatial dimensions, we observe solutions undergoing intermittent phases of contraction and expansion in their cores. Knowing that stable and unstable configurations can be mapped to disjoint regions of the breather parameter space, we find that amplitude modulated solutions are located in the middle of both stability regimes. This displays the dynamics of critical behavior for solutions around the stability limit.Comment: 18+7 pages, 20 figures. Minor typos fixed. Comments are welcom

    Affine Toda Solitons and Vertex Operators

    Full text link
    Affine Toda theories with imaginary couplings associate with any simple Lie algebra g{\bf g} generalisations of Sine Gordon theory which are likewise integrable and possess soliton solutions. The solitons are \lq\lq created" by exponentials of quantities F^i(z)\hat F^i(z) which lie in the untwisted affine Kac-Moody algebra g^{\bf\hat g} and ad-diagonalise the principal Heisenberg subalgebra. When g{\bf g} is simply-laced and highest weight irreducible representations at level one are considered, F^i(z)\hat F^i(z) can be expressed as a vertex operator whose square vanishes. This nilpotency property is extended to all highest weight representations of all affine untwisted Kac-Moody algebras in the sense that the highest non vanishing power becomes proportional to the level. As a consequence, the exponential series mentioned terminates and the soliton solutions have a relatively simple algebraic expression whose properties can be studied in a general way. This means that various physical properties of the soliton solutions can be directly related to the algebraic structure. For example, a classical version of Dorey's fusing rule follows from the operator product expansion of two F^\hat F's, at least when g{\bf g} is simply laced. This adds to the list of resemblances of the solitons with respect to the particles which are the quantum excitations of the fields.Comment: Imperial/TP/92-93/29 SWAT/92-93/5 PU-PH-93/1392, requires newma

    A Social Network Study To Improve Collaborative Partnerships Among the Southeastern Health Equity Council (SHEC)

    Get PDF
    This report presents research conducted on the relationships among and attributes of members of the Southeastern Health Equity Council (SHEC, herein Council) to provide recommendations for partnerships, collaboration, and the recruitment of new members. The background, methods, results, and recommendations are outlined in detail throughout this report. Social networks are measured and defined as connections among people, organization, and/or other units. SNA is a valuable and innovative tool for recognizing strengths and weaknesses in collaborative partnerships. The evaluative study presented herein can be replicated in other councils within the Regional Health Equity Councils to improve collaborations not only among SHEC partnerships, but also the nine remaining regions as well. Among the SHEC, social networking models will be designed in an efforts to better understand partnerships, reach the desire goal to analyze partnerships among SHEC, and develop a better understanding of the broad-based constituency served by the Council for the purposes of improving collaborative partnerships
    corecore