30 research outputs found

    Hairiness: the missing link between pollinators and pollination

    Get PDF
    Background. Functional traits are the primary biotic component driving organism influence on ecosystem functions; in consequence, traits are widely used in ecological research. However, most animal trait-based studies use easy-to-measure characteristics of species that are at best only weakly associated with functions. Animal-mediated pollination is a key ecosystem function and is likely to be influenced by pollinator traits, but to date no one has identified functional traits that are simple to measure and have good predictive power. Methods. Here, we show that a simple, easy to measure trait (hairiness) can predict pollinator effectiveness with high accuracy. We used a novel image analysis method to calculate entropy values for insect body surfaces as a measure of hairiness. We evaluated the power of our method for predicting pollinator effectiveness by regressing pollinator hairiness (entropy) against single visit pollen deposition (SVD) and pollen loads on insects. We used linear models and AICC model selection to determine which body regions were the best predictors of SVD and pollen load. Results. We found that hairiness can be used as a robust proxy of SVD. The best models for predicting SVD for the flower species Brassica rapa and Actinidia deliciosa were hairiness on the face and thorax as predictors (R2 D0:98 and 0.91 respectively). The best model for predicting pollen load for B. rapa was hairiness on the face (R2 D0:81). Discussion. We suggest that the match between pollinator body region hairiness and plant reproductive structure morphology is a powerful predictor of pollinator effectiveness. We show that pollinator hairiness is strongly linked to pollination an important ecosystem function, and provide a rigorous and time-efficient method for measuring hairiness. Identifying and accurately measuring key traits that drive ecosystem processes is critical as global change increasingly alters ecological communities, and subsequently, ecosystem functions worldwide.University of Auckland PCIG14-GA- 2013-631653, MBIE C11X130

    Global trends in the number and diversity of managed pollinator species

    Get PDF
    Cultivation of pollinator-dependent crops has expanded globally, increasing our reliance on insect pollination. This essential ecosystem service is provided by a wide range of managed and wild pollinators whose abundance and diversity are thought to be in decline, threatening sustainable food production. The Western honey bee (Apis mellifera) is amongst the best-monitored insects but the state of other managed pollinators is less well known. Here, we review the status and trends of all managed pollinators based on publicly accessible databases and the published literature. We found that, on a global scale, the number of managed A. mellifera colonies has increased by 85% since 1961, driven mainly by Asia. This contrasts with high reported colony overwinter mortality, especially in North America (average 26% since 2007) and Europe (average 16% since 2007). Increasing agricultural dependency on pollinators as well as threats associated with managing non-native pollinators have likely spurred interest in the management of alternative species for pollination, including bumble bees, stingless bees, solitary bees, and flies that have higher efficiency in pollinating specific crops. We identify 66 insect species that have been, or are considered to have the potential to be, managed for crop pollination, including seven bumble bee species and subspecies currently commercially produced mainly for the pollination of greenhouse-grown tomatoes and two species that are trap-nested in New Zealand. Other managed pollinators currently in use include eight solitary bee species (mainly for pollination services in orchards or alfalfa fields) and three fly species (mainly used in enclosures and for seed production). Additional species in each taxonomic category are under consideration for pollinator management. Examples include 15 stingless bee species that are able to buzz-pollinate, will fly in enclosures, and some of which have a history of management for honey production; their use for pollination is not yet established. To ensure sustainable, integrated pollination management in agricultural landscapes, the risks, as well as the benefits of novel managed pollinator species must be considered. We, therefore, urge the prioritization of biodiversity-friendly measures maintaining native pollinator species diversity to provide ecosystem resilience to future environmental changes.Fil: Osterman, Julia. Martin Luther University Halle-Wittenberg; Alemania. Helmholtz Centre for Environmental Research; AlemaniaFil: Aizen, Marcelo Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina. Institute for Advanced Study; AlemaniaFil: Biesmeijer, Jacobus C.. Leiden University; Países Bajos. Naturalis Biodiversity Center; Países BajosFil: Bosch, Jordi. Universitat Autònoma de Barcelona; EspañaFil: Howlett, Brad G.. The New Zealand Institute for Plant and Food Research Ltd.; Nueva ZelandaFil: Inouye, David W.. University of Maryland; Estados Unidos. Rocky Mountain Biological Laboratory; Estados UnidosFil: Jung, Chuleui. Andong National University; Corea del SurFil: Martins, Dino J.. University of Princeton; Estados UnidosFil: Medel, Rodrigo. Universidad de Chile; ChileFil: Pauw, Anton. Stellenbosch University; SudáfricaFil: Seymour, Colleen L.. University of Cape Town; Sudáfrica. South African National Biodiversity Institute; SudáfricaFil: Paxton, Robert J. German Centre for integrative Biodiversity Research; Alemania. Martin Luther University Halle-Wittenberg; Alemani

    The HIPASS Catalogue - II. Completeness, Reliability, and Parameter Accuracy

    Full text link
    The HI Parkes All Sky Survey (HIPASS) is a blind extragalactic HI 21-cm emission line survey covering the whole southern sky from declination -90 to +25. The HIPASS catalogue (HICAT), containing 4315 HI-selected galaxies from the region south of declination +2, is presented in Meyer et al. (2004a, Paper I). This paper describes in detail the completeness and reliability of HICAT, which are calculated from the recovery rate of synthetic sources and follow-up observations, respectively. HICAT is found to be 99 per cent complete at a peak flux of 84 mJy and an integrated flux of 9.4 Jy km/s. The overall reliability is 95 per cent, but rises to 99 per cent for sources with peak fluxes >58 mJy or integrated flux > 8.2 Jy km/s. Expressions are derived for the uncertainties on the most important HICAT parameters: peak flux, integrated flux, velocity width, and recessional velocity. The errors on HICAT parameters are dominated by the noise in the HIPASS data, rather than by the parametrization procedure.Comment: Accepted for publication in MNRAS. 12 pages, 11 figures. Paper with higher resolution figures can be downloaded from http://hipass.aus-vo.or

    Non-bee insects are important contributors to global crop pollination

    Get PDF
    Wild andmanaged bees arewell documented as effective pollinators of global crops of economic importance. However, the contributions by pollinators other than bees have been little explored despite their potential to contribute to crop production and stability in the face of environmental change. Non-bee pollinators include flies, beetles, moths, butterflies, wasps, ants, birds, and bats, among others. Here we focus on non-bee insects and synthesize 39 field studies from five continents that directly measured the crop pollination services provided by non-bees, honey bees, and other bees to compare the relative contributions of these taxa. Non-bees performed 25-50% of the total number of flower visits. Although non-bees were less effective pollinators than bees per flower visit, they made more visits; thus these two factors compensated for each other, resulting in pollination services rendered by non-bees that were similar to those provided by bees. In the subset of studies that measured fruit set, fruit set increased with non-bee insect visits independently of bee visitation rates, indicating that non-bee insects provide a unique benefit that is not provided by bees. We also show that non-bee insects are not as reliant as bees on the presence of remnant natural or seminatural habitat in the surrounding landscape. These results strongly suggest that non-bee insect pollinators play a significant role in global crop production and respond differently than bees to landscape structure, probably making their crop pollination services more robust to changes in land use. Non-bee insects provide a valuable service and provide potential insurance against bee population declines.Peer Reviewe

    CropPol: a dynamic, open and global database on crop pollination

    Get PDF
    Seventy five percent of the world's food crops benefit from insect pollination. Hence, there has been increased interest in how global change drivers impact this critical ecosystem service. Because standardized data on crop pollination are rarely available, we are limited in our capacity to understand the variation in pollination benefits to crop yield, as well as to anticipate changes in this service, develop predictions, and inform management actions. Here, we present CropPol, a dynamic, open and global database on crop pollination. It contains measurements recorded from 202 crop studies, covering 3,394 field observations, 2,552 yield measurements (i.e. berry weight, number of fruits and kg per hectare, among others), and 47,752 insect records from 48 commercial crops distributed around the globe. CropPol comprises 32 of the 87 leading global crops and commodities that are pollinator dependent. Malus domestica is the most represented crop (32 studies), followed by Brassica napus (22 studies), Vaccinium corymbosum (13 studies), and Citrullus lanatus (12 studies). The most abundant pollinator guilds recorded are honey bees (34.22% counts), bumblebees (19.19%), flies other than Syrphidae and Bombyliidae (13.18%), other wild bees (13.13%), beetles (10.97%), Syrphidae (4.87%), and Bombyliidae (0.05%). Locations comprise 34 countries distributed among Europe (76 studies), Northern America (60), Latin America and the Caribbean (29), Asia (20), Oceania (10), and Africa (7). Sampling spans three decades and is concentrated on 2001-05 (21 studies), 2006-10 (40), 2011-15 (88), and 2016-20 (50). This is the most comprehensive open global data set on measurements of crop flower visitors, crop pollinators and pollination to date, and we encourage researchers to add more datasets to this database in the future. This data set is released for non-commercial use only. Credits should be given to this paper (i.e., proper citation), and the products generated with this database should be shared under the same license terms (CC BY-NC-SA). This article is protected by copyright. All rights reserved
    corecore