10 research outputs found
Analyse du transfert intercellulaire du VIH-1 vers les macrophages
Macrophages are important targets of HIV-1 and play crucial roles in physiopathology of infection. Because of their long time survival capacity, infected macrophages participate in virus dissemination and establishment of persistent virus reservoirs in numerous tissues. In vitro, macrophages infection and analysis of the different steps of the virus cycle have been largely documented using cell-free virus infection. However, there is a paucity in knowledge of the mechanisms that control infection and dissemination to macrophages by cell-to-cell transfer. In the work presented here, we establish a model of HIV-1 cell-to-cell transfer from infected T cells to macrophages. We observed that infected T cells are able to interact with macrophages leading to cell fusion for transfer of viral material to macrophages targets. This cell-to-cell fusion transfer, very fast and efficient, is restricted to CCR5-tropic viruses, and mediated by viral envelope-receptor interactions. Transferred viruses can then accumulate in cytoplasmic compartments of newly lymphocyte/macrophages fused cells but we also observed early viral assembly and budding events at the plasma membrane of these fused cells, resulting from the merge of viral material between infected T cells and macrophages. These cells then acquire the ability to fuse with neighboring non-infected macrophages for virus dissemination. Together, these two-sequential envelope-dependent cell fusion process lead to the formation of highly virus-productive multinucleated giant cells reminiscent of the infected multinucleated giant macrophages detected in vivo in lymphoid organs and the central nervous system of HIV-1 infected patients and simian immunodeficiency virus-infected macaques. These mechanisms may represent an original mode of virus transmission for viral spreading and formation of macrophage virus reservoirs during HIV-1 infection.Les macrophages sont une cible particulièrement importante de l’infection par le VIH-1 et jouent un rôle crucial dans la physiopathologie de l’infection. Lorsqu’ils sont infectés, leur capacité de survie dans les tissus leur permet de jouer un rôle essentiel dans la dissémination virale et l’établissement de réservoirs viraux au niveau des différents territoires tissulaires. In vitro, les étapes précoces et tardives du cycle de réplication virale dans les macrophages ont été analysées dans le cadre de l’infection par des virus libres. Cependant, les modalités d’infection des macrophages lors d’une transmission intercellulaire reste largement inexplorées. Les travaux présentés ici ont permis d’établir un modèle de transmission intercellulaire du VIH-1 de lymphocytes T infectés vers les macrophages. Nous avons montré que les lymphocytes T infectés sont capables d’interagir étroitement avec les macrophages, conduisant ainsi à la fusion cellulaire de ces deux cellules et permettant le transfert de matériel viral dans les macrophages cibles. Ce transfert viral par fusion cellulaire, rapide et efficace, est restreint aux virus utilisant le corécepteur CCR5 et dépend de l’interaction entre l’enveloppe virale et le récepteur CD4. Les virus transférés sont alors stockés au sein de compartiment cytoplasmique des cellules fusionnées mais nous observons également des évènements précoces d’assemblage et de bourgeonnement du VIH-1 à la membrane plasmique des cellules fusionnées résultant de la fusion des membranes des lymphocytes T infectés et des macrophages cibles. Ces cellules fusionnées acquièrent alors la capacité de fusionner avec les macrophages non infectés environnants permettant la dissémination du VIH-1. L’ensemble de ces résultats met en évidence un nouveau mécanisme de transmission intercellulaire entre lymphocytes T et macrophages via un mécanisme de double fusion cellulaire dépendant de l’enveloppe virale et des récepteurs CD4 et CCR5. Ces évènements successifs de fusion entre lymphocytes T et macrophages puis entre macrophages permettent la formation de cellules géantes multinucléés capables de produire de grande quantité de virus infectieux. Ces cellules multinculées pourraient correspondre aux macrophages multinuclées observés in vivo dans les organes lymphoïdes et le système nerveux central de patients infectés par le VIH-1 ou de singes infectés par le SIV. Ce mécanisme représente donc un modèle de transmission intercellulaire original permettant la dissémination virale et la formation de macrophages réservoirs durant l’infection par le VIH-1
Mechanisms for Cell-to-Cell Transmission of HIV-1
While HIV-1 infection of target cells with cell-free viral particles has been largely documented, intercellular transmission through direct cell-to-cell contact may be a predominant mode of propagation in host. To spread, HIV-1 infects cells of the immune system and takes advantage of their specific particularities and functions. Subversion of intercellular communication allows to improve HIV-1 replication through a multiplicity of intercellular structures and membrane protrusions, like tunneling nanotubes, filopodia, or lamellipodia-like structures involved in the formation of the virological synapse. Other features of immune cells, like the immunological synapse or the phagocytosis of infected cells are hijacked by HIV-1 and used as gateways to infect target cells. Finally, HIV-1 reuses its fusogenic capacity to provoke fusion between infected donor cells and target cells, and to form infected syncytia with high capacity of viral production and improved capacities of motility or survival. All these modes of cell-to-cell transfer are now considered as viral mechanisms to escape immune system and antiretroviral therapies, and could be involved in the establishment of persistent virus reservoirs in different host tissues
Mechanisms for Cell-to-Cell Transmission of HIV-1
International audienceWhile HIV-1 infection of target cells with cell-free viral particles has been largely documented, intercellular transmission through direct cell-to-cell contact may be a predominant mode of propagation in host. To spread, HIV-1 infects cells of the immune system and takes advantage of their specific particularities and functions. Subversion of intercellular communication allows to improve HIV-1 replication through a multiplicity of intercellular structures and membrane protrusions, like tunneling nanotubes, filopodia, or lamellipodia-like structures involved in the formation of the virological synapse. Other features of immune cells, like the immunological synapse or the phagocytosis of infected cells are hijacked by HIV-1 and used as gateways to infect target cells. Finally, HIV-1 reuses its fusogenic capacity to provoke fusion between infected donor cells and target cells, and to form infected syncytia with high capacity of viral production and improved capacities of motility or survival. All these modes of cell-to-cell transfer are now considered as viral mechanisms to escape immune system and antiretroviral therapies, and could be involved in the establishment of persistent virus reservoirs in different host tissues
L’ouverture culturelle : un outil, une finalité
Les élèves issus de milieux populaires et scolarisés dans les réseaux d’éducation prioritaire sont souvent dans un dénuement culturel important. Cette ouverture culturelle très inégalitaire en fonction du milieu social dans lequel évoluent nos élèves vient renforcer les difficultés scolaires et d’insertion professionnelle à plus long terme. La participation à une vie culturelle riche et diversifiée est favorisée par des paramètres comme le niveau de diplôme et des revenus élevés, une proximité de l’offre culturelle, une familiarité précoce avec le monde de l’art, la sociabilité amicale, etc. Or, tous ces atouts se retrouvent en priorité au sein des cadres et professions libérales intellectuelles supérieures. Ainsi dans notre société, l’origine sociale, les chances de réussite scolaire jusqu’au plus haut niveau, et un bagage culturel favorisant cette réussite semblent bien irrémédiablement liés. Dans ce contexte, l’Éducation Nationale à partir de dispositifs tel que le Parcours d’Éducation Artistique et Culturelle (PEAC), cherche à réduire ces inégalités et permettre un égal accès à tous à la culture. Ces dispositifs sont déployés au niveau des établissements scolaires de façon plus ou moins marquée. Le lycée Jean Jaurès d’Argenteuil, lieu de notre recherche - action, affiche une volonté forte de mettre en place des actions permettant l’ouverture culturelle des élèves. À cela s’ajoute une volonté de donner du sens aux apprentissages et aux actions pédagogiques. Afin de répondre simultanément aux ambitions du PEAC et du lycée, nous proposons une démarche pédagogique centrée sur la visite d’une exposition artistique. Le thème de l’exposition (l’histoire du jeu vidéo) a permis de ne pas trop nous éloigner de la culture des élèves. Nous avons aussi souhaité donner du sens à cette démarche en la raccrochant au programme scolaire de la classe concernée.Ce mémoire développe la démarche proposée et ses fondements, rend compte de sa mise en œuvre dans une classe de première STI2D option SIN du lycée Jean Jaurès d’Argenteuil, et présente les résultats de l’enquête menée sur l’impact de cette action éducative sur les élèves, en termes d’expression d’une sensibilité
Virus-Mediated Cell-Cell Fusion
Cell-cell fusion between eukaryotic cells is a general process involved in many physiological and pathological conditions, including infections by bacteria, parasites, and viruses. As obligate intracellular pathogens, viruses use intracellular machineries and pathways for efficient replication in their host target cells. Interestingly, certain viruses, and, more especially, enveloped viruses belonging to different viral families and including human pathogens, can mediate cell-cell fusion between infected cells and neighboring non-infected cells. Depending of the cellular environment and tissue organization, this virus-mediated cell-cell fusion leads to the merge of membrane and cytoplasm contents and formation of multinucleated cells, also called syncytia, that can express high amount of viral antigens in tissues and organs of infected hosts. This ability of some viruses to trigger cell-cell fusion between infected cells as virus-donor cells and surrounding non-infected target cells is mainly related to virus-encoded fusion proteins, known as viral fusogens displaying high fusogenic properties, and expressed at the cell surface of the virus-donor cells. Virus-induced cell-cell fusion is then mediated by interactions of these viral fusion proteins with surface molecules or receptors involved in virus entry and expressed on neighboring non-infected cells. Thus, the goal of this review is to give an overview of the different animal virus families, with a more special focus on human pathogens, that can trigger cell-cell fusion
Cell-to-Cell Spreading of HIV-1 in Myeloid Target Cells Escapes SAMHD1 Restriction
International audienceDendritic cells (DCs) and macrophages as well as osteoclasts (OCs) are emerging as target cells of HIV-1 involved in virus transmission, dissemination, and establishment of persistent tissue virus reservoirs. While these myeloid cells are poorly infected by cell-free viruses because of the high expression levels of cellular restriction factors such as SAMHD1, we show here that HIV-1 uses a specific and common cell-to-cell fusion mechanism for virus transfer and dissemination from infected T lymphocytes to the target cells of the myeloid lineage, including immature DCs (iDCs), OCs, and macrophages, but not monocytes and mature DCs. The establishment of contacts with infected T cells leads to heterotypic cell fusion for the fast and massive transfer of viral material into OC and iDC targets, which subsequently triggers homotypic fusion with noninfected neighboring OCs and iDCs for virus dissemination. These two cell-to-cell fusion processes are not restricted by SAMHD1 and allow very efficient spreading of virus in myeloid cells, resulting in the formation of highly virus-productive multinucleated giant cells. These results reveal the cellular mechanism for SAMHD1-independent cell-to-cell spreading of HIV-1 in myeloid cell targets through the formation of the infected multinucleated giant cells observed in vivo in lymphoid and nonlymphoid tissues of HIV-1-infected patients. IMPORTANCE We demonstrate that HIV-1 uses a common two-step cell-to-cell fusion mechanism for massive virus transfer from infected T lymphocytes and dissemination to myeloid target cells, including dendritic cells and macrophages as well as osteoclasts. This cell-to-cell infection process bypasses the restriction imposed by the SAMHD1 host cell restriction factor for HIV-1 replication, leading to the formation of highly virus-productive multinucleated giant cells as observed in vivo in lymphoid and nonlymphoid tissues of HIV-1-infected patients. Since myeloid cells are emerging as important target cells of HIV-1, these results contribute to a better understanding of the role of these myeloid cells in pathogenesis, including cell-associated virus sexual transmission, cell-to-cell virus spreading, and establishment of long-lived viral tissue reservoirs
FOXO1 transcription factor plays a key role in T cell—HIV-1 interaction
International audienceHIV-1 is dependent on the host cell for providing the metabolic resources for completion of its viral replication cycle. Thus, HIV-1 replicates efficiently only in activated CD4+ T cells. Barriers preventing HIV-1 replication in resting CD4+ T cells include a block that limits reverse transcription and also the lack of activity of several inducible transcription factors, such as NF-ÎşB and NFAT. Because FOXO1 is a master regulator of T cell functions, we studied the effect of its inhibition on T cell/HIV-1 interactions. By using AS1842856, a FOXO1 pharmacologic inhibitor, we observe that FOXO1 inhibition induces a metabolic activation of T cells with a G0/G1 transition in the absence of any stimulatory signal. One parallel outcome of this change is the inhibition of the activity of the HIV restriction factor SAMHD1 and the activation of the NFAT pathway. FOXO1 inhibition by AS1842856 makes resting T cells permissive to HIV-1 infection. In addition, we found that FOXO1 inhibition by either AS1842856 treatment or upon FOXO1 knockdown induces the reactivation of HIV-1 latent proviruses in T cells. We conclude that FOXO1 has a central role in the HIV-1/T cell interaction and that inhibiting FOXO1 with drugs such as AS1842856 may be a new therapeutic shock-and-kill strategy to eliminate the HIV-1 reservoir in human T cells
Bone degradation machinery of osteoclasts: An HIV-1 target that contributes to bone loss
International audienceBone deficits are frequent in HIV-1–infected patients. We report here that osteoclasts, the cells specialized in bone resorption, are infected by HIV-1 in vivo in humanized mice and ex vivo in human joint biopsies. In vitro, infection of human osteoclasts occurs at different stages of osteoclastogenesis via cell-free viruses and, more efficiently, by transfer from infected T cells. HIV-1 infection markedly enhances adhesion and osteolytic activity of human osteoclasts by modifying the structure and function of the sealing zone, the osteoclast-specific bone degradation machinery. Indeed, the sealing zone is broader due to F-actin enrichment of its basal units (i.e., the podosomes). The viral protein Nef is involved in all HIV-1–induced effects partly through the activation of Src, a regulator of podosomes and of their assembly as a sealing zone. Supporting these results, Nef-transgenic mice exhibit an increased osteoclast density and bone defects, and osteoclasts derived from these animals display high osteolytic activity. Altogether, our study evidences osteoclasts as host cells for HIV-1 and their pathological contribution to bone disorders induced by this virus, in part via Nef
Bone degradation machinery of osteoclasts: An HIV-1 target that contributes to bone loss
International audienceBone deficits are frequent in HIV-1–infected patients. We report here that osteoclasts, the cells specialized in bone resorption, are infected by HIV-1 in vivo in humanized mice and ex vivo in human joint biopsies. In vitro, infection of human osteoclasts occurs at different stages of osteoclastogenesis via cell-free viruses and, more efficiently, by transfer from infected T cells. HIV-1 infection markedly enhances adhesion and osteolytic activity of human osteoclasts by modifying the structure and function of the sealing zone, the osteoclast-specific bone degradation machinery. Indeed, the sealing zone is broader due to F-actin enrichment of its basal units (i.e., the podosomes). The viral protein Nef is involved in all HIV-1–induced effects partly through the activation of Src, a regulator of podosomes and of their assembly as a sealing zone. Supporting these results, Nef-transgenic mice exhibit an increased osteoclast density and bone defects, and osteoclasts derived from these animals display high osteolytic activity. Altogether, our study evidences osteoclasts as host cells for HIV-1 and their pathological contribution to bone disorders induced by this virus, in part via Nef