133 research outputs found

    Gene silencing in tick cell lines using small interfering or long double-stranded RNA

    Get PDF
    Gene silencing by RNA interference (RNAi) is an important research tool in many areas of biology. To effectively harness the power of this technique in order to explore tick functional genomics and tick-microorganism interactions, optimised parameters for RNAi-mediated gene silencing in tick cells need to be established. Ten cell lines from four economically important ixodid tick genera (Amblyomma, Hyalomma, Ixodes and Rhipicephalus including the sub-species Boophilus) were used to examine key parameters including small interfering RNA (siRNA), double stranded RNA (dsRNA), transfection reagent and incubation time for silencing virus reporter and endogenous tick genes. Transfection reagents were essential for the uptake of siRNA whereas long dsRNA alone was taken up by most tick cell lines. Significant virus reporter protein knockdown was achieved using either siRNA or dsRNA in all the cell lines tested. Optimum conditions varied according to the cell line. Consistency between replicates and duration of incubation with dsRNA were addressed for two Ixodes scapularis cell lines; IDE8 supported more consistent and effective silencing of the endogenous gene subolesin than ISE6, and highly significant knockdown of the endogenous gene 2I1F6 in IDE8 cells was achieved within 48 h incubation with dsRNA. In summary, this study shows that gene silencing by RNAi in tick cell lines is generally more efficient with dsRNA than with siRNA but results vary between cell lines and optimal parameters need to be determined for each experimental system

    In vitro activation and enzyme kinetic analysis of recombinant midgut serine proteases from the Dengue vector mosquito Aedes aegypti

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The major Dengue virus vector <it>Aedes aegypti </it>requires nutrients obtained from blood meal proteins to complete the gonotrophic cycle. Although bioinformatic analyses of <it>Ae. aegypti </it>midgut serine proteases have provided evolutionary insights, very little is known about the biochemical activity of these digestive enzymes.</p> <p>Results</p> <p>We used peptide specific antibodies to show that midgut serine proteases are expressed as zymogen precursors, which are cleaved to the mature form after blood feeding. Since midgut protein levels are insufficient to purify active proteases directly from blood fed mosquitoes, we engineered recombinant proteins encoding a heterologous enterokinase cleavage site to permit generation of the bona fide mature form of four midgut serine proteases (AaET, AaLT, AaSPVI, AaSPVII) for enzyme kinetic analysis. Cleavage of the chromogenic trypsin substrate BApNA showed that AaET has a catalytic efficiency (k<sub>cat</sub>/K<sub>M</sub>) that is ~30 times higher than bovine trypsin, and ~2-3 times higher than AaSPVI and AaSPVII, however, AaLT does not cleave BApNA. To measure the enzyme activities of the mosquito midgut proteases using natural substrates, we developed a quantitative cleavage assay based on cleavage of albumin and hemoglobin proteins. These studies revealed that the recombinant AaLT enzyme was indeed catalytically active, and cleaved albumin and hemoglobin with equivalent efficiency to that of AaET, AaSPVI, and AaSPVII. Structural modeling of the AaLT and AaSPVI mature forms indicated that AaLT is most similar to serine collagenases, whereas AaSPVI appears to be a classic trypsin.</p> <p>Conclusions</p> <p>These data show that <it>in vitro </it>activation of recombinant serine proteases containing a heterologous enterokinase cleavage site can be used to investigate enzyme kinetics and substrate cleavage properties of biologically important mosquito proteases.</p

    West Nile Virus Experimental Evolution in vivo and the Trade-off Hypothesis

    Get PDF
    In nature, arthropod-borne viruses (arboviruses) perpetuate through alternating replication in vertebrate and invertebrate hosts. The trade-off hypothesis proposes that these viruses maintain adequate replicative fitness in two disparate hosts in exchange for superior fitness in one host. Releasing the virus from the constraints of a two-host cycle should thus facilitate adaptation to a single host. This theory has been addressed in a variety of systems, but remains poorly understood. We sought to determine the fitness implications of alternating host replication for West Nile virus (WNV) using an in vivo model system. Previously, WNV was serially or alternately passed 20 times in vivo in chicks or mosquitoes and resulting viruses were characterized genetically. In this study, these test viruses were competed in vivo in fitness assays against an unpassed marked reference virus. Fitness was assayed in chicks and in two important WNV vectors, Culex pipiens and Culex quinquefasciatus. Chick-specialized virus displayed clear fitness gains in chicks and in Cx. pipiens but not in Cx. quinquefasciatus. Cx. pipiens-specialized virus experienced reduced fitness in chicks and little change in either mosquito species. These data suggest that when fitness is measured in birds the trade-off hypothesis is supported; but in mosquitoes it is not. Overall, these results suggest that WNV evolution is driven by alternate cycles of genetic expansion in mosquitoes, where purifying selection is weak and genetic diversity generated, and restriction in birds, where purifying selection is strong

    aeGEPUCI: a database of gene expression in the dengue vector mosquito, Aedes aegypti

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Aedes aegypti </it>is the principal vector of dengue and yellow fever viruses. The availability of the sequenced and annotated genome enables genome-wide analyses of gene expression in this mosquito. The large amount of data resulting from these analyses requires efficient cataloguing before it becomes useful as the basis for new insights into gene expression patterns and studies of the underlying molecular mechanisms for generating these patterns.</p> <p>Findings</p> <p>We provide a publicly-accessible database and data-mining tool, aeGEPUCI, that integrates 1) microarray analyses of sex- and stage-specific gene expression in <it>Ae. aegypti</it>, 2) functional gene annotation, 3) genomic sequence data, and 4) computational sequence analysis tools. The database can be used to identify genes expressed in particular stages and patterns of interest, and to analyze putative <it>cis</it>-regulatory elements (CREs) that may play a role in coordinating these patterns. The database is accessible from the address <url>http://www.aegep.bio.uci.edu</url>.</p> <p>Conclusions</p> <p>The combination of gene expression, function and sequence data coupled with integrated sequence analysis tools allows for identification of expression patterns and streamlines the development of CRE predictions and experiments to assess how patterns of expression are coordinated at the molecular level.</p

    C6/36 Aedes albopictus Cells Have a Dysfunctional Antiviral RNA Interference Response

    Get PDF
    Mosquitoes rely on RNA interference (RNAi) as their primary defense against viral infections. To this end, the combination of RNAi and invertebrate cell culture systems has become an invaluable tool in studying virus-vector interactions. Nevertheless, a recent study failed to detect an active RNAi response to West Nile virus (WNV) infection in C6/36 (Aedes albopictus) cells, a mosquito cell line frequently used to study arthropod-borne viruses (arboviruses). Therefore, we sought to determine if WNV actively evades the host's RNAi response or if C6/36 cells have a dysfunctional RNAi pathway. C6/36 and Drosophila melanogaster S2 cells were infected with WNV (Flaviviridae), Sindbis virus (SINV, Togaviridae) and La Crosse virus (LACV, Bunyaviridae) and total RNA recovered from cell lysates. Small RNA (sRNA) libraries were constructed and subjected to high-throughput sequencing. In S2 cells, virus-derived small interfering RNAs (viRNAs) from all three viruses were predominantly 21 nt in length, a hallmark of the RNAi pathway. However, in C6/36 cells, viRNAs were primarily 17 nt in length from WNV infected cells and 26–27 nt in length in SINV and LACV infected cells. Furthermore, the origin (positive or negative viral strand) and distribution (position along viral genome) of S2 cell generated viRNA populations was consistent with previously published studies, but the profile of sRNAs isolated from C6/36 cells was altered. In total, these results suggest that C6/36 cells lack a functional antiviral RNAi response. These findings are analogous to the type-I interferon deficiency described in Vero (African green monkey kidney) cells and suggest that C6/36 cells may fail to accurately model mosquito-arbovirus interactions at the molecular level

    Variation in Vector Competence for Dengue Viruses Does Not Depend on Mosquito Midgut Binding Affinity

    Get PDF
    Several factors, such as mosquito and virus genetics and environmental variables, determine the ability of mosquitoes to transmit dengue viruses. In this report, we describe new and important information that in some ways contradicts what is in the literature. Midgut infection barriers have been described as important determinants of virus transmission in mosquitoes but we found that virus binding to these midgut cells does not vary. When we compared binding of 8 different, low passage dengue viruses to mosquito midguts that were dissected out of Aedes aegypti mosquitoes (the main vectors of dengue) from Mexico and Texas, we found that there were no differences. Previously, we (and others) had shown that these same viruses differed significantly in replication and dissemination throughout the rest of the mosquito body, including the salivary glands, and therefore they differed greatly in their potential to be transmitted to humans. Thus, the data presented here are important considerations for future studies of vector competence and in determining strategies for control of dengue viruses in the vector

    Insulin-Like Peptides and the Target of Rapamycin Pathway Coordinately Regulate Blood Digestion and Egg Maturation in the Mosquito Aedes aegypti

    Get PDF
    Mosquitoes are insects that vector many serious pathogens to humans and other vertebrates. Most mosquitoes must feed on the blood of a vertebrate host to produce eggs. In turn, multiple cycles of blood feeding promote frequent contacts with hosts and make mosquitoes ideal disease vectors. Both hormonal and nutritional factors are involved in regulating egg development in the mosquito, Aedes aegypti. However, the processes that regulate digestion of the blood meal remain unclear.Here we report that insulin peptide 3 (ILP3) directly stimulated late phase trypsin-like gene expression in blood fed females. In vivo knockdown of the mosquito insulin receptor (MIR) by RNA interference (RNAi) delayed but did not fully inhibit trypsin-like gene expression in the midgut, ecdysteroid (ECD) production by ovaries, and vitellogenin (Vg) expression by the fat body. In contrast, in vivo treatment with double-stranded MIR RNA and rapamycin completely blocked egg production. In vitro experiments showed that amino acids did not simulate late phase trypsin-like gene expression in the midgut or ECD production by the ovaries. However, amino acids did enhance ILP3-mediated stimulation of trypsin-like gene expression and ECD production.Overall, our results indicate that ILPs from the brain synchronize blood meal digestion and amino acid availability with ovarian ECD production to maximize Vg expression by the fat body. The activation of digestion by ILPs may also underlie the growth promoting effects of insulin and TOR signaling in other species

    Evaluation of a range of mammalian and mosquito cell lines for use in Chikungunya virus research

    Get PDF
    Chikungunya virus (CHIKV) is becoming an increasing global health issue which has spread across the globe and as far north as southern Europe. There is currently no vaccine or anti-viral treatment available. Although there has been a recent increase in CHIKV research, many of these in vitro studies have used a wide range of cell lines which are not physiologically relevant to CHIKV infection in vivo. In this study, we aimed to evaluate a panel of cell lines to identify a subset that would be both representative of the infectious cycle of CHIKV in vivo, and amenable to in vitro applications such as transfection, luciferase assays, immunofluorescence, western blotting and virus infection. Based on these parameters we selected four mammalian and two mosquito cell lines, and further characterised these as potential tools in CHIKV research

    Functional genomics of the horn fly, Haematobia irritans (Linnaeus, 1758)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The horn fly, <it>Haematobia irritans </it>(Linnaeus, 1758) (Diptera: Muscidae) is one of the most important ectoparasites of pastured cattle. Horn flies infestations reduce cattle weight gain and milk production. Additionally, horn flies are mechanical vectors of different pathogens that cause disease in cattle. The aim of this study was to conduct a functional genomics study in female horn flies using Expressed Sequence Tags (EST) analysis and RNA interference (RNAi).</p> <p>Results</p> <p>A cDNA library was made from whole abdominal tissues collected from partially fed adult female horn flies. High quality horn fly ESTs (2,160) were sequenced and assembled into 992 unigenes (178 contigs and 814 singlets) representing molecular functions such as serine proteases, cell metabolism, mitochondrial function, transcription and translation, transport, chromatin structure, vitellogenesis, cytoskeleton, DNA replication, cell response to stress and infection, cell proliferation and cell-cell interactions, intracellular trafficking and secretion, and development. Functional analyses were conducted using RNAi for the first time in horn flies. Gene knockdown by RNAi resulted in higher horn fly mortality (protease inhibitor functional group), reduced oviposition (vitellogenin, ferritin and vATPase groups) or both (immune response and 5'-NUC groups) when compared to controls. Silencing of ubiquitination ESTs did not affect horn fly mortality and ovisposition while gene knockdown in the ferritin and vATPse functional groups reduced mortality when compared to controls.</p> <p>Conclusions</p> <p>These results advanced the molecular characterization of this important ectoparasite and suggested candidate protective antigens for the development of vaccines for the control of horn fly infestations.</p

    Arbovirus-Derived piRNAs Exhibit a Ping-Pong Signature in Mosquito Cells

    Get PDF
    The siRNA pathway is an essential antiviral mechanism in insects. Whether other RNA interference pathways are involved in antiviral defense remains unclear. Here, we report in cells derived from the two main vectors for arboviruses, Aedes albopictus and Aedes aegypti, the production of viral small RNAs that exhibit the hallmarks of ping-pong derived piwi-associated RNAs (piRNAs) after infection with positive or negative sense RNA viruses. Furthermore, these cells produce endogenous piRNAs that mapped to transposable elements. Our results show that these mosquito cells can initiate de novo piRNA production and recapitulate the ping-pong dependent piRNA pathway upon viral infection. The mechanism of viral-piRNA production is discussed
    • 

    corecore