68 research outputs found

    Patterns and determinants of fertility in Melbourne

    No full text
    Period fertility has fluctuated markedly in Australia over the last fifty years. The last peak occurred in 1971, and in that year the Department of Demography of the Australian national University carried out in Melbourne the first major fertility survey ever conducted in Australia. This research is based on data from the Melbourne Family Survey, which has proved to be an excellent vehicle for the analysis of many aspects of Australian family formation. The thesis first establishes the physiological setting in which the childbearing of the Melbourne respondents took place, and then goes on to discuss patterns of contraceptive use both within marriage cohorts and within different social groups. This is followed by analyses of cohort fertility patterns and the timing of childbearing. The effect on current fertility of age at marriage is examined both through cumulative marital fertility rates and through multivariate analyses, the latter simultaneously providing indications of social characteristics that influence current family size. A simple model based on the birth intervals of non-contraceptors is next developed, and applied to examine the effects of both volitional and non-volitional fecundity depressants on reproductive performance; contraceptive effectiveness; and parity-specific patterns of family formation. While average completed family size was found to vary little between marriage cohorts and, within marriage cohorts, to vary litter between women with different social characteristics, the tempo of childbearing was found to have been far from stable in the recent past. Changes in family building patterns can be summarized as a compression of the childbearing span of women married in the 1950s and, among women married after 1960, a return to the longer spacing patterns which characterized women who married during the Depression and the Second World War. Such changes have been largely responsible for fluctuations in period marital fertility rates in the recent past: only if the tendency to postpone childbearing is accompanied by some dramatic attitudinal changes (of which we have no evidence) can we expect the average completed family size of the most recently married women in the sample to decline significantly

    Medical consequences of pathogenic CNVs in adults: Analysis of the UK Biobank

    Get PDF
    Background: Genomic CNVs increase the risk for early-onset neurodevelopmental disorders, but their impact on medical outcomes in later life is still poorly understood. The UK Biobank allows us to study the medical consequences of CNVs in middle and old age in half a million well-phenotyped adults. Methods: We analysed all Biobank participants for the presence of 54 CNVs associated with genomic disorders or clinical phenotypes, including their reciprocal deletions or duplications. After array quality control and exclusion of first-degree relatives, we compared 381 452 participants of white British or Irish origin who carried no CNVs with carriers of each of the 54 CNVs (ranging from 5 to 2843 persons). We used logistic regression analysis to estimate the risk of developing 58 common medical phenotypes (3132 comparisons). Results and conclusions: Many of the CNVs have profound effects on medical health and mortality, even in people who have largely escaped early neurodevelopmental outcomes. Forty-six CNV–phenotype associations were significant at a false discovery rate threshold of 0.1, all in the direction of increased risk. Known medical consequences of CNVs were confirmed, but most identified associations are novel. Deletions at 16p11.2 and 16p12.1 had the largest numbers of significantly associated phenotypes (seven each). Diabetes, hypertension, obesity and renal failure were affected by the highest numbers of CNVs. Our work should inform clinicians in planning and managing the medical care of CNV carriers

    Effects of pathogenic CNVs on physical traits in participants of the UK Biobank

    Get PDF
    Background Copy number variants (CNVs) have been shown to increase risk for physical anomalies, developmental, psychiatric and medical disorders. Some of them have been associated with changes in weight, height, and other physical traits. As most studies have been performed on children and young people, these effects of CNVs in middle-aged and older people are not well established. The UK Biobank recruited half a million adults who provided a variety of physical measurements. We called all CNVs from the Affymetrix microarrays and selected a set of 54 CNVs implicated as pathogenic (including their reciprocal deletions/duplications) and that were found in five or more persons. Linear regression analysis was used to establish their association with 16 physical traits relevant to human health. Results 396,725 participants of white British or Irish descent (excluding first-degree relatives) passed our quality control filters. Out of the 864 CNV/trait associations, 214 were significant at a false discovery rate of 0.1, most of them novel. Many of these traits increase risk for adverse health outcomes: e.g. increases in weight, waist-to-hip ratio, pulse rate and body fat composition. Deletions at 16p11.2, 16p12.1, NRXN1 and duplications at 16p13.11 and 22q11.2 produced the highest numbers of significant associations. Five CNVs produced average changes of over one standard deviation for the 16 traits, compared to controls: deletions at 16p11.2 and 22q11.2, and duplications at 3q29, the Williams-Beuren and Potocki-Lupski regions. CNVs at 1q21.1, 2q13, 16p11.2 and 16p11.2 distal, 16p12.1, 17p12 and 17q12 demonstrated one or more mirror image effects of deletions versus duplications. Conclusions Carriers of many CNVs should be monitored for physical traits that increase morbidity and mortality. Genes within these CNVs can give insights into biological processes and therapeutic interventions

    Anti–GM-CSF otilimab versus sarilumab or placebo in patients with rheumatoid arthritis and inadequate response to targeted therapies: a phase III randomised trial (contRAst 3)

    Get PDF
    Objectives To investigate the efficacy and safety of otilimab, an anti-granulocyte-macrophage colony-stimulating factor antibody, in patients with active rheumatoid arthritis and an inadequate response to conventional synthetic (cs) and biologic disease-modifying antirheumatic drugs (DMARDs) and/or Janus kinase inhibitors. Methods ContRAst 3 was a 24-week, phase III, multicentre, randomised controlled trial. Patients received subcutaneous otilimab (90/150 mg once weekly), subcutaneous sarilumab (200 mg every 2 weeks) or placebo for 12 weeks, in addition to csDMARDs. Patients receiving placebo were switched to active interventions at week 12 and treatment continued to week 24. The primary end point was the proportion of patients achieving an American College of Rheumatology ≄20% response (ACR20) at week 12. Results Overall, 549 patients received treatment. At week 12, there was no significant difference in the proportion of ACR20 responders with otilimab 90 mg and 150 mg versus placebo (45% (p=0.2868) and 51% (p=0.0596) vs 38%, respectively). There were no significant differences in Clinical Disease Activity Index, Health Assessment Questionnaire-Disability Index, pain Visual Analogue Scale or Functional Assessment of Chronic Illness Therapy-Fatigue scores with otilimab versus placebo at week 12. Sarilumab demonstrated superiority to otilimab in ACR20 response and secondary end points. The incidence of adverse or serious adverse events was similar across treatment groups. Conclusions Otilimab demonstrated an acceptable safety profile but failed to achieve the primary end point of ACR20 and improve secondary end points versus placebo or demonstrate non-inferiority to sarilumab in this patient population. Trial registration number NCT04134728

    A compilation of global bio-optical in situ data for ocean-colour satellite applications - version three

    Get PDF
    A global in situ data set for validation of ocean colour products from the ESA Ocean Colour Climate Change Initiative (OC-CCI) is presented. This version of the compilation, starting in 1997, now extends to 2021, which is important for the validation of the most recent satellite optical sensors such as Sentinel 3B OLCI and NOAA-20 VIIRS. The data set comprises in situ observations of the following variables: spectral remote-sensing reflectance, concentration of chlorophyll-a, spectral inherent optical properties, spectral diffuse attenuation coefficient, and total suspended matter. Data were obtained from multi-project archives acquired via open internet services or from individual projects acquired directly from data providers. Methodologies were implemented for homogenization, quality control, and merging of all data. Minimal changes were made on the original data, other than conversion to a standard format, elimination of some points, after quality control and averaging of observations that were close in time and space. The result is a merged table available in text format. Overall, the size of the data set grew with 148 432 rows, with each row representing a unique station in space and time (cf. 136 250 rows in previous version; Valente et al., 2019). Observations of remote-sensing reflectance increased to 68 641 (cf. 59 781 in previous version; Valente et al., 2019). There was also a near tenfold increase in chlorophyll data since 2016. Metadata of each in situ measurement (original source, cruise or experiment, principal investigator) are included in the final table. By making the metadata available, provenance is better documented and it is also possible to analyse each set of data separately. The compiled data are available at https://doi.org/10.1594/PANGAEA.941318 (Valente et al., 2022)

    Evaluation of individual and ensemble probabilistic forecasts of COVID-19 mortality in the United States

    Get PDF
    Short-term probabilistic forecasts of the trajectory of the COVID-19 pandemic in the United States have served as a visible and important communication channel between the scientific modeling community and both the general public and decision-makers. Forecasting models provide specific, quantitative, and evaluable predictions that inform short-term decisions such as healthcare staffing needs, school closures, and allocation of medical supplies. Starting in April 2020, the US COVID-19 Forecast Hub (https://covid19forecasthub.org/) collected, disseminated, and synthesized tens of millions of specific predictions from more than 90 different academic, industry, and independent research groups. A multimodel ensemble forecast that combined predictions from dozens of groups every week provided the most consistently accurate probabilistic forecasts of incident deaths due to COVID-19 at the state and national level from April 2020 through October 2021. The performance of 27 individual models that submitted complete forecasts of COVID-19 deaths consistently throughout this year showed high variability in forecast skill across time, geospatial units, and forecast horizons. Two-thirds of the models evaluated showed better accuracy than a naĂŻve baseline model. Forecast accuracy degraded as models made predictions further into the future, with probabilistic error at a 20-wk horizon three to five times larger than when predicting at a 1-wk horizon. This project underscores the role that collaboration and active coordination between governmental public-health agencies, academic modeling teams, and industry partners can play in developing modern modeling capabilities to support local, state, and federal response to outbreaks

    The United States COVID-19 Forecast Hub dataset

    Get PDF
    Academic researchers, government agencies, industry groups, and individuals have produced forecasts at an unprecedented scale during the COVID-19 pandemic. To leverage these forecasts, the United States Centers for Disease Control and Prevention (CDC) partnered with an academic research lab at the University of Massachusetts Amherst to create the US COVID-19 Forecast Hub. Launched in April 2020, the Forecast Hub is a dataset with point and probabilistic forecasts of incident cases, incident hospitalizations, incident deaths, and cumulative deaths due to COVID-19 at county, state, and national, levels in the United States. Included forecasts represent a variety of modeling approaches, data sources, and assumptions regarding the spread of COVID-19. The goal of this dataset is to establish a standardized and comparable set of short-term forecasts from modeling teams. These data can be used to develop ensemble models, communicate forecasts to the public, create visualizations, compare models, and inform policies regarding COVID-19 mitigation. These open-source data are available via download from GitHub, through an online API, and through R packages
    • 

    corecore