39 research outputs found

    Jon Abbink, A Decade of Ethiopia: Politics, Economy and Society 2004–2016

    Get PDF
    BuchbesprechungBook Revie

    Hatem Elliesie, Völkerrechtliche Beziehungen zwischen Äthiopien und Italien im Lichte des Vertrags von Uccialli/Wuchale (1889)

    Get PDF
    Revie

    The G2A Receptor Controls Polarization of Macrophage by Determining Their Localization Within the Inflamed Tissue

    Get PDF
    Macrophages are highly versatile cells, which acquire, depending on their microenvironment, pro- (M1-like), or antiinflammatory (M2-like) phenotypes. Here, we studied the role of the G-protein coupled receptor G2A (GPR132), in chemotactic migration and polarization of macrophages, using the zymosan-model of acute inflammation. G2A-deficient mice showed a reduced zymosan-induced thermal hyperalgesia, which was reversed after macrophage depletion. Fittingly, the number of M1-like macrophages was reduced in the inflamed tissue in G2A-deficient mice. However, G2A activation was not sufficient to promote M1-polarization in bone marrow-derived macrophages. While the number of monocyte-derived macrophages in the inflamed paw was not altered, G2A-deficient mice had less macrophages in the direct vicinity of the origin of inflammation, an area marked by the presence of zymosan, neutrophil accumulation and proinflammatory cytokines. Fittingly neutrophil efferocytosis was decreased in G2A-deficient mice and several lipids, which are released by neutrophils and promote G2A-mediated chemotaxis, were increased in the inflamed tissue. Taken together, G2A is necessary to position macrophages in the proinflammatory microenvironment surrounding the center of inflammation. In absence of G2A the macrophages are localized in an antiinflammatory microenvironment and macrophage polarization is shifted toward M2-like macrophages

    Ian Campbell: Ethiopia 1937: The Plot to Kill Graziani. The Attempted Assassination of Mussolini’s Viceroy

    No full text
    Review  

    Tesema Ta’a: The Political Economy of an African Society in Transformation: The Case of Macca Oromo (Ethiopia)

    No full text
    Revie

    Erotomania Variants in Dementia

    No full text

    Attenuated suppression of the oxidative burst by cells dying in the presence of oxidized low density lipoprotein

    No full text
    Macrophages ingesting apoptotic cells attenuate inflammatory responses, such as reactive oxygen species (ROS) generation. In atherosclerosis, ongoing inflammation and accumulation of apoptotic/necrotic material are observed, suggesting defects of phagocytes in recognizing or responding to dying cells. Modified lipoproteins such as oxidized LDL (oxLDL) are known to promote inflammation and to interfere with apoptotic cell clearance. Here, we studied the impact of cells exposed to oxLDL on their ability to interfere with the oxidative burst in phagocytes. In contrast to apoptotic cells, cells dying in response to or in the presence of oxLDL failed to suppress ROS generation despite efficiently being taken up by phagocytes. In addition, apoptotic cells, but not oxLDL-treated cells, inhibited phosphorylation of extracellular signal-regulated kinase, which is important for NADPH oxidase activation. oxLDL treatment did not interfere with activation of the antiinflammatory transcriptional regulator peroxisome proliferator-activated receptor gamma by apoptotic cells. Moreover, cells exposed to oxLDL failed to suppress lipopolysaccharide- induced proinflammatory cytokine expression, whereas apoptotic cells attenuated these phagocyte responses. Thus, the presence of oxLDL during cell death impaired the ability of apoptotic cells to act antiinflammatory with regard to oxidative burst inhibition and cytokine expression in phagocytes
    corecore