19 research outputs found

    Scalar fluctuations in dilatonic brane-worlds

    Get PDF
    We derive and solve the full set of scalar perturbation equations for a class of five-dimensional brane--world solutions, with a dilaton scalar field coupled to the bulk cosmological constant and to a 3-brane. The spectrum contains one localized massless scalar mode, to be interpreted as an effective dilaton on the brane, inducing long--range scalar interactions. Two massive scalar modes yield corrections to Newton's law at short distances, which persist even in the limit of vanishing dilaton (namely, in the standard Randall--Sundrum configuration).Comment: 10 pages. Talk presented by V. Bozza at COSMO-01 conference, Rovaniemi, 200

    Assisting pre-big bang phenomenology through short-lived axions

    Full text link
    We present the results of a detailed study of how isocurvature axion fluctuations are converted into adiabatic metric perturbations through axion decay, and discuss the constraints on the parameters of pre-big bang cosmology needed for consistency with present CMB-anisotropy data. The large-scale normalization of temperature fluctuations has a non-trivial dependence both on the mass and on the initial value of the axion. In the simplest, minimal models of pre-big bang inflation, consistency with the COBE normalization requires a slightly tilted (blue) spectrum, while a strictly scale-invariant spectrum requires mild modifications of the minimal backgrounds at large curvature and/or string coupling.Comment: 14 pages, latex, 1 figure included using epsfig. A few typos corrected, two references added, the figure slightly improved. To appear in Phys. Lett.

    Constraints on pre-big bang parameter space from CMBR anisotropies

    Get PDF
    The so-called curvaton mechanism --a way to convert isocurvature perturbations into adiabatic ones-- is investigated both analytically and numerically in a pre-big bang scenario where the role of the curvaton is played by a sufficiently massive Kalb--Ramond axion of superstring theory. When combined with observations of CMBR anisotropies at large and moderate angular scales, the present analysis allows us to constrain quite considerably the parameter space of the model: in particular, the initial displacement of the axion from the minimum of its potential and the rate of evolution of the compactification volume during pre-big bang inflation. The combination of theoretical and experimental constraints favours a slightly blue spectrum of scalar perturbations, and/or a value of the string scale in the vicinity of the SUSY-GUT scale.Comment: 63 pages in Latex style with 14 figures include

    Localization of Scalar Fluctuations in a Dilatonic Brane-World Scenario

    Get PDF
    We derive and solve the full set of scalar perturbation equations for a class of Z2Z_2-symmetric five-dimensional geometries generated by a bulk cosmological constant and by a 3-brane non-minimally coupled to a bulk dilaton field. The massless scalar modes, like their tensor analogues, are localized on the brane, and provide long-range four-dimensional dilatonic interactions, which are generically present even when matter on the brane carries no dilatonic charge. The shorter-range corrections induced by the continuum of massive scalar modes are always present: they persist even in the case of a trivial dilaton background (the standard Randall--Sundrum configuration) and vanishing dilatonic charges.Comment: 22 pages, late

    Adiabatic perturbations in pre big bang models: matching conditions and scale invariance

    Get PDF
    At low energy, the four-dimensional effective action of the ekpyrotic model of the universe is equivalent to a slightly modified version of the pre big bang model. We discuss cosmological perturbations in these models. In particular we address the issue of matching the perturbations from a collapsing to an expanding phase in full generality. We show that, generically, one obtains n=0n=0 for the spectrum of scalar perturbations in the original pre big model (with vanishing potential). When an exponential potential for the dilaton is included, a scale invariant spectrum (n=1n=1) of adiabatic scalar perturbations is produced under very generic matching conditions, both in a modified pre big bang and ekpyrotic scenario. We also derive general results valid for power law scale factors matched to a radiation dominated era.Comment: 11 pages, 1 figure, revised version with small corrections to match version in print. Results and conclusions unchange

    Brane cosmological solutions in six-dimensional warped flux compactifications

    Full text link
    We study cosmology on a conical brane in the six-dimensional Einstein-Maxwell-dilaton system, where the extra dimensions are compactified by a magnetic flux. We systematically construct exact cosmological solutions using the fact that the system is equivalently described by (6+n)-dimensional pure Einstein-Maxwell theory via dimensional reduction. In particular, we find a power-law inflationary solution for a general dilatonic coupling. When the dilatonic coupling is given by that of Nishino-Sezgin chiral supergravity, this reduces to the known solution which is not inflating. The power-law solution is shown to be the late-time attractor. We also investigate cosmological tensor perturbations in this model using the (6+n)-dimensional description. We obtain the separable equation of motion and find that there always exist a zero mode, while tachyonic modes are absent in the spectrum. The mass spectrum of Kaluza-Klein modes is obtained numerically.Comment: 12 pages, 2 figures; v2: references added; v3: version published in JCA

    Adiabatic and Isocurvature Perturbations for Multifield Generalized Einstein Models

    Full text link
    Low energy effective field theories motivated by string theory will likely contain several scalar moduli fields which will be relevant to early Universe cosmology. Some of these fields are expected to couple with non-standard kinetic terms to gravity. In this paper, we study the splitting into adiabatic and isocurvature perturbations for a model with two scalar fields, one of which has a non-standard kinetic term in the Einstein-frame action. Such actions can arise, e.g., in the Pre-Big-Bang and Ekpyrotic scenarios. The presence of a non-standard kinetic term induces a new coupling between adiabatic and isocurvature perturbations which is non-vanishing when the potential for the matter fields is nonzero. This coupling is un-suppressed in the long wavelength limit and thus can lead to an important transfer of power from the entropy to the adiabatic mode on super-Hubble scales. We apply the formalism to the case of a previously found exact solution with an exponential potential and study the resulting mixing of adiabatic and isocurvature fluctuations in this example. We also discuss the possible relevance of the extra coupling in the perturbation equations for the process of generating an adiabatic component of the fluctuations spectrum from isocurvature perturbations without considering a later decay of the isocurvature component.Comment: 11 pages, 3 figures, one equation corrected, typos fixed, conclusions unchange
    corecore