787 research outputs found

    Theory and analysis of electrode size optimization for capacitive microfabricated ultrasonic transducers

    Get PDF
    Cataloged from PDF version of article.Theoretical analysis and computer simulations of capacitive microfabricated ultrasonic transducers indicate that device performance can be optimized through judicious patterning of electrodes. The conceptual basis of the analysis is that electrostatic force should be applied only where it is most effective, such as at the center of a circular membrane. If breakdown mechanisms are ignored, an infinitesimally small electrode with an infinite bias voltage results in the optimal transducer, A more realistic design example compares the 3-dB bandwidths of a fully metalized transducer and a partially metalized transducer, each tuned with a lossless Butterworth network. It is found that the bandwidth of the optimally metalized device is twice that of the fully metalized device

    Thin film MoS2 nanocrystal based ultraviolet photodetector

    Get PDF
    Cataloged from PDF version of article.We report on the development of UV range photodetector based on molybdenum disulfide nanocrystals (MoS2-NCs). The inorganic MoS2-NCs are produced by pulsed laser ablation technique in deionized water and the colloidal MoS2-NCs are characterized by transmission electron microscopy, Raman spectroscopy, X-ray diffraction and UV/VIS absorption measurements. The photoresponse studies indicate that the fabricated MoS2-NCs photodetector (MoS2-NCs PD) operates well within 300-400 nm UV range, with diminishing response at visible wavelengths, due to the MoS2-NCs absorption characteristics. The structural and the optical properties of laser generated MoS2-NCs suggest promising applications in the field of photonics and optoelectronics. (C) 2012 Optical Society of Americ

    Isovector Collective Response Function of Nuclear Matter at Finite Temperature

    Full text link
    We study isovector collective excitations in nuclear matter by employing the linearized Landau-Vlasov equation with and without a non-Markovian binary collision term at finite temperature. We calculate the giant dipole resonance (GDR) strength function for finite nuclei using Steinwedel-Jensen model and also by Thomas-Fermi approximation, and we compare them for 120Sn and 208Pb with experimental results.Comment: 15 pages, 4 figure

    Classification d'expressions vocales passives versus actives

    Get PDF
    Six expressions sont généralement considérées pour caractériser les états émotifs humains : Sourire, Surprise, Colère, Tristesse, dégoût et Neutre. Différentes mesures peuvent être extraites à partir du signal de parole pour caractériser ces expressions, à savoir la fréquence fondamentale, l'énergie, le SPI (rapport des énergies des HF et des BF dans le signal) et le débit de parole. Une classification automatique des cinq expressions basées sur ces caractéristiques présente des conflits entre la Colère, la Surprise et le Sourire d'une part et le Neutre et la Tristesse d'autre part. Ce conflit entre classes d'expressions est également retrouvé chez le classifieur humain. Nous proposons donc de définir deux classes d'expressions: Active regroupant le Sourire, la Surprise et la Colère et Passive regroupant le Neutre et la Tristesse. Une telle classification est également plus réaliste et plus appropriée pour l'intégration d'information de parole dans un système de classification multimodale combinant la parole et la vidéo, ce qui est à long terme le but de notre travail. Dans ce papier, différentes méthodes de classification sont testées: un classifieur Bayésien, une Analyse Discriminante Linéaire (ADL), le classifieur au K plus proches vosins(KNN) et un classifieur à Machine à Vecteur de Support (SVM) avec une fonction de base gaussienne. Pour les deux classes considérées, les meilleurs taux de classification sont obtenus avec le classificateur SVM avec un taux de reconnaissance de 89.74% pour l'état Actif et de 86.54 % pour l'état Passif

    A ranking-based meta-analysis reveals let-7 family as a meta-signature for grade classification in breast cancer

    Get PDF
    Breast cancer is one of the most important causes of cancer-related deaths worldwide in women. In addition to gene expression studies, the progressing work in the miRNA area including miRNA microarray studies, brings new aspects to the research on the cancer development and progression. Microarray technology has been widely used to find new biomarkers in research and many transcriptomic microarray studies are available in public databases. In this study, the breast cancer miRNA and mRNA microarray studies were collected according to the availability of their data and clinical information, and combined by a newly developed ranking-based meta-analysis approach to find out candidate miRNA biomarkers (meta-miRNAs) that classify breast cancers according to their grades and explain the relation between miRNAs and mRNAs. This approach provided meta-miRNAs specific to breast cancer grades, pointing out let-7 family members as grade classifiers. The qRTPCR studies performed with independent breast tumors confirmed the potential biomarker role of let-7 family members (meta-miRNAs). The concordance between the meta-mRNAs and miRNA target genes specific to tumor grade (common genes) supported the idea of mRNAs as miRNA targets. The pathway analysis results showed that most of the let-7 family miRNA targets, and also common genes, were significantly taking part in cancer-related pathways. The qRT-PCR studies, together with bioinformatic analyses, confirmed the results of meta-analysis approach, which is dynamic and allows combining datasets from different platforms. © 2015 Oztemur et al

    Thin film MoS2 nanocrystal based ultraviolet photodetector

    Get PDF
    We report on the development of UV range photodetector based on molybdenum disulfide nanocrystals (MoS2-NCs). The inorganic MoS2- NCs are produced by pulsed laser ablation technique in deionized water and the colloidal MoS2-NCs are characterized by transmission electron microscopy, Raman spectroscopy, X-ray diffraction and UV/VIS absorption measurements. The photoresponse studies indicate that the fabricated MoS 2- NCs photodetector (MoS2-NCs PD) operates well within 300-400 nm UV range, with diminishing response at visible wavelengths, due to the MoS2- NCs absorption characteristics. The structural and the optical properties of laser generated MoS2-NCs suggest promising applications in the field of photonics and optoelectronics. © 2012 Optical Society of America

    Exclusive electroproduction of K+ Lambda and K+ Sigma^0 final states at Q^2 = 0.030-0.055 (GeV/c)^2

    Get PDF
    Cross section measurements of the exclusive p(e,e'K+)Lambda,Sigma^0 electroproduction reactions have been performed at the Mainz Microtron MAMI in the A1 spectrometer facility using for the first time the Kaos spectrometer for kaon detection. These processes were studied in a kinematical region not covered by any previous experiment. The nucleon was probed in its third resonance region with virtual photons of low four-momenta, Q^2= 0.030-0.055 (GeV/c)^2. The MAMI data indicate a smooth transition in Q^2 from photoproduction to electroproduction cross sections. Comparison with predictions of effective Lagrangian models based on the isobar approach reveal that strong longitudinal couplings of the virtual photon to the N* resonances can be excluded from these models.Comment: 16 pages, 7 figure

    Observation of Lambda H-4 hyperhydrogen by decay-pion spectroscopy in electron scattering

    Full text link
    At the Mainz Microtron MAMI, the first high-resolution pion spectroscopy from decays of strange systems was performed by electron scattering off a Be-9 target in order to study the ground-state masses of Lambda-hypernuclei. Positively charged kaons were detected by a short-orbit spectrometer with a broad momentum acceptance at zero degree forward angles with respect to the beam, efficiently tagging the production of strangeness in the target nucleus. In coincidence, negatively charged decay-pions were detected by two independent high-resolution spectrometers. About 10^3 pionic weak decays of hyperfragments and hyperons were observed. The pion momentum distribution shows a monochromatic peak at p_pi ~ 133 MeV/c, corresponding to the unique signature for the two-body decay of hyperhydrogen Lambda H-4 -> He-4 + pi-, stopped inside the target. Its binding energy was determined to be B_Lambda = 2.12 +- 0.01 (stat.) +- 0.09 (syst.) MeV with respect to the H-3 + Lambda mass

    Experimental and numerical study of chemiluminescence characteristics in premixed counterflow flames of methane based fuel blends

    Get PDF
    Non-intrusive chemiluminescence measurements have been used as heat release rate and equivalence ratio indicators for gas turbine combustor active control. In the present study, measurements and modelling of OH*, CH(A)*, C 2 *, and CO 2 * chemiluminescence are used to examine chemiluminescence sensing of heat release rate and equivalence ratio in premixed counterflow methane – air flames with equivalence ratio from 0.6 to 1.3 and strain rate from 80 to 400 s -1 . Two spectrally resolved detecting optical systems were used to detect spatially-averaged (global) and spatially resolved (local) chemiluminescence characteristics in the reaction zone. A recently published reaction mechanism 1 for the chemiluminescence of the OH*, CH*, and C 2 * species is incorporated to GRI-Mech 3.0. The augmented mechanism is further validated against the experimental results of the present study and is used to predict the chemiluminescence characteristics of premixed counterflow methane – air flames. The mechanism includes OH* chemiluminescence formation paths from hydrogen reaction, which have not been evaluated before in premixed counterflow flames. The CHEMKIN based counterflow flame code, OPPDIF is employed to simulate the experiments. The calculated OH* and CH(A)* chemiluminescence agrees well with the experimental results measured by both optical methods. Both the experimental and numerical results demonstrate the ability of OH* and CH(A)* intensities to mark heat release rate in methane – air flames. Overall, CH* may be preferable for heat release rate sensing applications at elevated equivalence ratio and strain rate. For equivalence ratio sensing in methane combustion, the measured and simulated OH*/CH(A)* chemiluminescent intensity ratio is highly dependent on equivalence ratio and nearly independent of strain rate. Thus, this ratio can be used to monitor equivalence ratio. However, a non-monotonic behavior of the OH*/CH* ratio for very lean combustion (ER < 0.7) is observed, in agreement with previous studies. This behavior can be reproduced by the reaction mechanisms. The behavior of OH*/CH(A)* chemiluminescent intensity ratio for flames of methanepropane blends are also calculated with the detailed chemistry model. The addition of propane in methane modifies the behaviour of OH*/CH(A)* chemiluminescent intensity ratio dramatically. However, the numerical results suggest that the OH*/CH(A)* chemiluminescent intensity ratio is an indicator of equivalence ratio in lean methanepropane fuel blended flames

    Energy scavenging from insect flight

    Full text link
    This paper reports the design, fabrication and testing of an energy scavenger that generates power from the wing motion of a Green June Beetle (C otinis nitida ) during its tethered flight. The generator utilizes non-resonant piezoelectric bimorphs operated in the d 31 bending mode to convert mechanical vibrations of a beetle into electrical output. The available deflection, force, and power output from oscillatory movements at different locations on a beetle are measured with a meso-scale piezoelectric beam. This way, the optimum location to scavenge energy is determined, and up to ~115 µW total power is generated from body movements. Two initial generator prototypes were fabricated, mounted on a beetle, and harvested 11.5 and 7.5 µW in device volumes of 11.0 and 5.6 mm 3 , respectively, from 85 to 100 Hz wing strokes during the beetle's tethered flight. A spiral generator was designed to maximize the power output by employing a compliant structure in a limited area. The necessary technology needed to fabricate this prototype was developed, including a process to machine high-aspect ratio devices from bulk piezoelectric substrates with minimum damage to the material using a femto-second laser. The fabricated lightweight spiral generators produced 18.5–22.5 µW on a bench-top test setup mimicking beetles' wing strokes. Placing two generators (one on each wing) can result in more than 45 µW of power per insect. A direct connection between the generator and the flight muscles of the insect is expected to increase the final power output by one order of magnitude.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90804/1/0960-1317_21_9_095016.pd
    corecore