179 research outputs found

    Gemini multiconjugate adaptive optics system review – I. Design, trade-offs and integration

    Get PDF
    The Gemini multiconjugate adaptive optics system (GeMS) at the Gemini South telescope in Cerro PachĂ³n is the first sodium-based multilaser guide star (LGS) adaptive optics system. It uses five LGSs and two deformable mirrors to measure and compensate for atmospheric distortions. The GeMS project started in 1999, and saw first light in 2011. It is now in regular operation, producing images close to the diffraction limit in the near-infrared, with uniform quality over a field of view of two square arcminutes. This paper is the first one in a two-paper review of GeMS. It describes the system, explains why and how it was built, discusses the design choices and trade-offs, and presents the main issues encountered during the course of the project. Finally, we briefly present the results of the system first light

    The Instrumentation Program for the Thirty Meter Telescope

    Get PDF
    An overview of the current status of the Thirty Meter Telescope (TMT) instrumentation program is presented. Science cases and operational concepts as well as their links to the instruments are continually revisited and updated through a series of workshops and conferences. Work on the three first-light instruments (WFOS IRIS, and IRMS) has made significant progress, and many groups in TMT partner communities are developing future instrument concepts. Other instrument-related subsystems are also receiving considerable attention given their importance to the scientific end-to-end performance of the Observatory. As an example, we describe aspects of the facility instrument cooling system that are crucially important to successful diffraction-limited observations on an extremely large telescope

    Optimizing multi-LGS WFS AO performance in the context of sodium profile evolution and non-common path aberration

    Get PDF
    For Extremely Large Telescope (ELT) adaptive optics (AO) systems, multiple Sodium Laser Guide Star (LGS) wavefront sensors (WFSs) are required to achieve high sky coverage and diffraction limited performance. However, temporal and spatial variation of the sodium profile causes measurement biases that appear at all time scales and vary between LGS WFSs. To make things worse, optical design residuals, polishing and alignment errors also create non-common-path aberrations (NCPA) that vary between sub-apertures and different WFS, causing LGS WFS to work significantly off null with a nonlinear response. The induced aberrations are consequently non-radially symmetric, even for center launch laser beams with polar coordinate detectors. Natural guide star (NGS) based truth wavefront sensors are often suggested as a method of sensing these LGS WFS aberrations, but a single sensor will suffer strong anisoplanatism that may introduce additional errors. In this paper, we present mitigation strategies and performance estimations based on simulations for the Thirty Meter Telescope (TMT) Narrow Field Infrared AO system (NFIRAOS)

    The laser guide star facility for the Thirty Meter Telescope

    Get PDF
    The Thirty Meter Telescope (TMT) will utilize adaptive optics to achieve near diffraction-limited images in the near-infrared using both natural and laser guide stars. The Laser Guide Star Facility (LGSF) will project up to eight Na laser beacons to generate guide stars in the Earth's Na layer at 90 - 110 km altitude. The LGSF will generate at least four distinct laser guide star patterns (asterisms) of different geometry and angular diameter to meet the requirements of the specific adaptive optics modules for the TMT instruments. We describe the baseline concept for this facility, which draws on the heritage from the systems being installed at the Gemini telescopes. Major subsystems include the laser itself and its enclosure, the optics for transferring the laser beams up the telescope structure and the asterism generator and launch telescope, both mounted behind the TMT secondary mirror. We also discuss operational issues, particularly the required safety interlocks, and potential future upgrades to higher laser powers and precompensation of the projected laser beacons using an uplink adaptive optics system

    The TMT Instrumentation Program

    Get PDF
    An overview of the current status of the Thirty Meter Telescope (TMT) instrumentation program is presented. Conceptual designs for the three first light instruments (IRIS, WFOS and IRMS) are in progress, as well as feasibility studies of MIRES. Considerable effort is underway to understand the end-to-end performance of the complete telescopeadaptive optics-instrument system under realistic conditions on Mauna Kea. Highly efficient operation is being designed into the TMT system, based on a detailed investigation of the observation workflow to ensure very fast target acquisition and set up of all subsystems. Future TMT instruments will almost certainly involve contributions from institutions in many different locations in North America and partner nations. Coordinating and optimizing the design and construction of the instruments to ensure delivery of the best possible scientific capabilities is an interesting challenge. TMT welcomes involvement from all interested instrument teams

    Thirty Meter Telescope (TMT) Narrow Field Infrared Adaptive Optics System (NFIRAOS) real-time controller preliminary architecture

    Get PDF
    The Narrow Field Infrared Adaptive Optics System (NFIRAOS) is the first light Adaptive Optics (AO) system for the Thirty Meter Telescope (TMT). A critical component of NFIRAOS is the Real-Time Controller (RTC) subsystem which provides real-time wavefront correction by processing wavefront information to compute Deformable Mirror (DM) and Tip/Tilt Stage (TTS) commands. The National Research Council of Canada - Herzberg (NRC-H), in conjunction with TMT, has developed a preliminary design for the NFIRAOS RTC. The preliminary architecture for the RTC is comprised of several Linux-based servers. These servers are assigned various roles including: the High-Order Processing (HOP) servers, the Wavefront Corrector Controller (WCC) server, the Telemetry Engineering Display (TED) server, the Persistent Telemetry Storage (PTS) server, and additional testing and spare servers. There are up to six HOP servers that accept high-order wavefront pixels, and perform parallelized pixel processing and wavefront reconstruction to produce wavefront corrector error vectors. The WCC server performs low-order mode processing, and synchronizes and aggregates the high-order wavefront corrector error vectors from the HOP servers to generate wavefront corrector commands. The Telemetry Engineering Display (TED) server is the RTC interface to TMT and other subsystems. The TED server receives all external commands and dispatches them to the rest of the RTC servers and is responsible for aggregating several offloading and telemetry values that are reported to other subsystems within NFIRAOS and TMT. The TED server also provides the engineering GUIs and real-time displays. The Persistent Telemetry Storage (PTS) server contains fault tolerant data storage that receives and stores telemetry data, including data for Point-Spread Function Reconstruction (PSFR)

    TMT adaptive optics program status report

    Get PDF
    We provide an update on the development of the first light adaptive optics systems for the Thirty Meter Telescope (TMT) over the past two years. The first light AO facility for TMT consists of the Narrow Field Infra-Red AO System (NFIRAOS) and the associated Laser Guide Star Facility (LGSF). This order 60 Ă— 60 laser guide star (LGS) multi-conjugate AO (MCAO) architecture will provide uniform, diffraction-limited performance in the J, H, and K bands over 17-30 arc sec diameter fields with 50 per cent sky coverage at the galactic pole, as is required to support TMT science cases. Both NFIRAOS and the LGSF have successfully completed design reviews during the last twelve months. We also report on recent progress in AO component prototyping, control algorithm development, and system performance analysis

    NFIRAOS First Facility AO System for the Thirty Meter Telescope

    Get PDF
    NFIRAOS, the Thirty Meter Telescope's first adaptive optics system is an order 60x60 Multi-Conjugate AO system with two deformable mirrors. Although most observing will use 6 laser guide stars, it also has an NGS-only mode. Uniquely, NFIRAOS is cooled to -30 C to reduce thermal background. NFIRAOS delivers a 2-arcminute beam to three client instruments, and relies on up to three IR WFSs in each instrument. We present recent work including: robust automated acquisition on these IR WFSs; trade-off studies for a common-size of deformable mirror; real-time computing architectures; simplified designs for high-order NGS-mode wavefront sensing; modest upgrade concepts for high-contrast imaging.Comment: ..submitted to SPIE 9148 Astronomical Telescopes and Instrumentation - Adaptive Optics Systems IV (2014
    • …
    corecore