102 research outputs found
11-interval PFG pulse sequence for improved measurement of fast velocities of fluids with high diffusivity in systems with short T2(∗).
Magnetic resonance (MR) was used to measure SF6 gas velocities in beds filled with particles of 1.1 mm and 0.5 mm in diameter. Four pulse sequences were tested: a traditional spin echo pulse sequence, the 9-interval and 13-interval pulse sequence of Cotts et al. (1989) and a newly developed 11-interval pulse sequence. All pulse sequences measured gas velocity accurately in the region above the particles at the highest velocities that could be achieved (up to 0.1 ms(-1)). The spin echo pulse sequence was unable to measure gas velocity accurately in the bed of particles, due to effects of background gradients, diffusivity and acceleration in flow around particles. The 9- and 13-interval pulse sequence measured gas velocity accurately at low flow rates through the particles (expected velocity <0.06 ms(-1)), but could not measure velocity accurately at higher flow rates. The newly developed 11-interval pulse sequence was more accurate than the 9- and 13-interval pulse sequences at higher flow rates, but for velocities in excess of 0.1 ms(-1) the measured velocity was lower than the expected velocity. The increased accuracy arose from the smaller echo time that the new pulse sequence enabled, reducing selective attenuation of signal from faster moving nuclei.CMB acknowledges the Gates Cambridge Trust for funding his research.This is the author accepted manuscript. The final version is available from Elsevier via http://dx.doi.org/10.1016/j.jmr.2016.01.02
Recommended from our members
Magnetic resonance imaging of gas dynamics in the freeboard of fixed beds and bubbling fluidized beds
Magnetic resonance imaging (MRI) was used to measure directly gas velocity and gas velocity distribution in the freeboard region of a fluidized bed (52 mm dia.) under bubbling fluidization and just below minimum fluidization. The bed consisted of poppy seed particles 1.1 mm in diameter and was fluidized using SF6 gas at 7.5 barg for MRI purposes. In the system, bubbles approximately 20 mm in diameter rose through the centre of the bed. In the case of bubbling fluidization, time-averaged velocity maps at different vertical positions in the freeboard showed downward moving gas in the centre of the bed and upward moving gas near the walls for this particular bed. However, below minimum fluidization conditions, the profiles of gas velocity in the freeboard were flat, with respect to the radial dimension, with minor and random spatial variance, indicating that the profiles observed during bubbling arose from bubble breakthrough. The reasons for these observed patterns of flow are discussed.CMB acknowledges the Gates Cambridge Trust for funding his research.This is the author accepted manuscript. The final version is available from Elsevier via http://dx.doi.org/10.1016/j.ces.2016.03.00
Magnetic resonance characterization of coupled gas and particle dynamics in a bubbling fluidized bed
Relative flow between granular material and gas can create phenomena in which particles behave like a liquid with bubbles rising through them. In this paper, magnetic resonance imaging is used to measure the velocities of the gas and solid phases in a bubbling fluidized bed. Comparison with theory shows that the average velocity of gas through the interstices between particles is predicted correctly by classic analytical theory. Experiments were also used to validate predictions from computer simulations of gas and solid motion. The experiments show a wide distribution of gas velocities in both bubbling and emulsion regions, providing a different direction for computational and analytical theory.C.M.B. acknowledges financial support from the Gates Cambridge Trust and Syncrude Canada Ltd
Methicillin-resistant Staphylococcus aureus (MRSA) in rehabilitation and chronic-care-facilities: what is the best strategy?
BACKGROUND: The risk associated with methicillin-resistant Staphylococcus aureus (MRSA) has been decreasing for several years in intensive care departments, but is now increasing in rehabilitation and chronic-care-facilities (R-CCF). The aim of this study was to use published data and our own experience to discuss the roles of screening for MRSA carriers, the type of isolation to be implemented and the efficiency of chemical decolonization. DISCUSSION: Screening identifies over 90% of patients colonised with MRSA upon admission to R-CCF versus only 50% for intensive care units. Only totally dependent patients acquire MRSA. Thus, strict geographical isolation, as opposed to "social reinsertion", is clearly of no value. However, this should not lead to the abandoning of isolation, which remains essential during the administration of care. The use of chemicals to decolonize the nose and healthy skin appeared to be of some value and the application of this procedure could make technical isolation unnecessary in a non-negligible proportion of cases. SUMMARY: Given the increase in morbidity associated with MRSA observed in numerous hospitals, the emergence of a community-acquired disease associated with these strains and the evolution of glycopeptide-resistant strains, the voluntary application of a strategy combining screening, technical isolation and chemical decolonization in R-CCF appears to be an urgent matter of priority
Extraction of pharmacokinetic evidence of drug-drug interactions from the literature
Drug-drug interaction (DDI) is a major cause of morbidity and mortality and a subject of intense scientific interest. Biomedical literature mining can aid DDI research by extracting evidence for large numbers of potential interactions from published literature and clinical databases. Though DDI is investigated in domains ranging in scale from intracellular biochemistry to human populations, literature mining has not been used to extract specific types of experimental evidence, which are reported differently for distinct experimental goals. We focus on pharmacokinetic evidence for DDI, essential for identifying causal mechanisms of putative interactions and as input for further pharmacological and pharmacoepidemiology investigations. We used manually curated corpora of PubMed abstracts and annotated sentences to evaluate the efficacy of literature mining on two tasks: first, identifying PubMed abstracts containing pharmacokinetic evidence of DDIs; second, extracting sentences containing such evidence from abstracts. We implemented a text mining pipeline and evaluated it using several linear classifiers and a variety of feature transforms. The most important textual features in the abstract and sentence classification tasks were analyzed. We also investigated the performance benefits of using features derived from PubMed metadata fields, various publicly available named entity recognizers, and pharmacokinetic dictionaries. Several classifiers performed very well in distinguishing relevant and irrelevant abstracts (reaching F10.93, MCC0.74, iAUC0.99) and sentences (F10.76, MCC0.65, iAUC0.83). We found that word bigram features were important for achieving optimal classifier performance and that features derived from Medical Subject Headings (MeSH) terms significantly improved abstract classification. We also found that some drug-related named entity recognition tools and dictionaries led to slight but significant improvements, especially in classification of evidence sentences. Based on our thorough analysis of classifiers and feature transforms and the high classification performance achieved, we demonstrate that literature mining can aid DDI discovery by supporting automatic extraction of specific types of experimental evidence.National Institutes of Health, National Library of Medicine Program, grant 01LM011945-01 "BLR: Evidence-based Drug-Interaction Discovery: In-Vivo, In-Vitro and Clinical," a grant from the Indiana University Collaborative Research Program 2013, "Drug-Drug Interaction Prediction from Large-scale Mining of Literature and Patient Records," as well as a grant from the joint program between the Fundação Luso-Americana para o Desenvolvimento (Portugal) and National Science Foundation (USA), 2012-2014, "Network Mining For Gene Regulation And Biochemical Signaling.
Environmental Influences on Mate Preferences as Assessed by a Scenario Manipulation Experiment
Many evolutionary psychology studies have addressed the topic of mate preferences, focusing particularly on gender and cultural differences. However, the extent to which situational and environmental variables might affect mate preferences has been comparatively neglected. We tested 288 participants in order to investigate the perceived relative importance of six traits of an ideal partner (wealth, dominance, intelligence, height, kindness, attractiveness) under four different hypothetical scenarios (status quo/nowadays, violence/post-nuclear, poverty/resource exhaustion, prosperity/global well-being). An equal number of participants (36 women, 36 men) was allotted to each scenario; each was asked to allocate 120 points across the six traits according to their perceived value. Overall, intelligence was the trait to which participants assigned most importance, followed by kindness and attractiveness, and then by wealth, dominance and height. Men appraised attractiveness as more valuable than women. Scenario strongly influenced the relative importance attributed to traits, the main finding being that wealth and dominance were more valued in the poverty and post-nuclear scenarios, respectively, compared to the other scenarios. Scenario manipulation generally had similar effects in both sexes, but women appeared particularly prone to trade off other traits for dominance in the violence scenario, and men particularly prone to trade off other traits for wealth in the poverty scenario. Our results are in line with other correlational studies of situational variables and mate preferences, and represent strong evidence of a causal relationship of environmental factors on specific mate preferences, corroborating the notion of an evolved plasticity to current ecological conditions. A control experiment seems to suggest that our scenarios can be considered as realistic descriptions of the intended ecological conditions
Environmental Influences on Mate Preferences as Assessed by a Scenario Manipulation Experiment
Many evolutionary psychology studies have addressed the topic of mate preferences, focusing particularly on gender and cultural differences. However, the extent to which situational and environmental variables might affect mate preferences has been comparatively neglected. We tested 288 participants in order to investigate the perceived relative importance of six traits of an ideal partner (wealth, dominance, intelligence, height, kindness, attractiveness) under four different hypothetical scenarios (status quo/nowadays, violence/post-nuclear, poverty/resource exhaustion, prosperity/global well-being). An equal number of participants (36 women, 36 men) was allotted to each scenario; each was asked to allocate 120 points across the six traits according to their perceived value. Overall, intelligence was the trait to which participants assigned most importance, followed by kindness and attractiveness, and then by wealth, dominance and height. Men appraised attractiveness as more valuable than women. Scenario strongly influenced the relative importance attributed to traits, the main finding being that wealth and dominance were more valued in the poverty and post-nuclear scenarios, respectively, compared to the other scenarios. Scenario manipulation generally had similar effects in both sexes, but women appeared particularly prone to trade off other traits for dominance in the violence scenario, and men particularly prone to trade off other traits for wealth in the poverty scenario. Our results are in line with other correlational studies of situational variables and mate preferences, and represent strong evidence of a causal relationship of environmental factors on specific mate preferences, corroborating the notion of an evolved plasticity to current ecological conditions. A control experiment seems to suggest that our scenarios can be considered as realistic descriptions of the intended ecological conditions
Gram Negative Wound Infection in Hospitalised Adult Burn Patients-Systematic Review and Metanalysis-
BACKGROUND:
Gram negative infection is a major determinant of morbidity and survival. Traditional teaching suggests that burn wound infections in different centres are caused by differing sets of causative organisms. This study established whether Gram-negative burn wound isolates associated to clinical wound infection differ between burn centres.
METHODS:
Studies investigating adult hospitalised patients (2000-2010) were critically appraised and qualified to a levels of evidence hierarchy. The contribution of bacterial pathogen type, and burn centre to the variance in standardised incidence of Gram-negative burn wound infection was analysed using two-way analysis of variance.
PRIMARY FINDINGS:
Pseudomonas aeruginosa, Klebsiella pneumoniae, Acinetobacter baumanni, Enterobacter spp., Proteus spp. and Escherichia coli emerged as the commonest Gram-negative burn wound pathogens. Individual pathogens' incidence did not differ significantly between burn centres (F (4, 20) = 1.1, p = 0.3797; r2 = 9.84).
INTERPRETATION:
Gram-negative infections predominate in burn surgery. This study is the first to establish that burn wound infections do not differ significantly between burn centres. It is the first study to report the pathogens responsible for the majority of Gram-negative infections in these patients. Whilst burn wound infection is not exclusive to these bacteria, it is hoped that reporting the presence of this group of common Gram-negative "target organisms" facilitate clinical practice and target research towards a defined clinical demand.peer-reviewe
Mineral Composition is Altered by Osteoblast Expression of an Engineered Gs-Coupled Receptor
Activation of the Gs G protein–coupled receptor Rs1 in osteoblasts increases bone mineral density by 5- to 15-fold in mice and recapitulates histologic aspects of fibrous dysplasia of the bone. However, the effects of constitutive Gs signaling on bone tissue quality are not known. The goal of this study was to determine bone tissue quality in mice resulting from osteoblast-specific constitutive Gs activation, by the complementary techniques of FTIR spectroscopy and synchrotron radiation micro-computed tomography (SRμCT). Col1(2.3)-tTA/TetO-Rs1 double transgenic (DT) mice, which showed osteoblast-specific constitutive Gs signaling activity by the Rs1 receptor, were created. Femora and calvariae of DT and wild-type (WT) mice (6 and 15 weeks old) were analyzed by FTIR spectroscopy. WT and DT femora (3 and 9 weeks old) were imaged by SRμCT. Mineral-to-matrix ratio was 25% lower (P = 0.010), carbonate-to-phosphate ratio was 20% higher (P = 0.025), crystallinity was 4% lower (P = 0.004), and cross-link ratio was 11% lower (P = 0.025) in 6-week DT bone. Differences persisted in 15-week animals. Quantitative SRμCT analysis revealed substantial differences in mean values and heterogeneity of tissue mineral density (TMD). TMD values were 1,156 ± 100 and 711 ± 251 mg/cm3 (mean ± SD) in WT and DT femoral diaphyses, respectively, at 3 weeks. Similar differences were found in 9-week animals. These results demonstrate that continuous Gs activation in murine osteoblasts leads to deposition of immature bone tissue with reduced mineralization. Our findings suggest that bone tissue quality may be an important contributor to increased fracture risk in fibrous dysplasia patients
- …