212 research outputs found

    Radio Location of Partial Discharge Sources: A Support Vector Regression Approach

    Get PDF
    Partial discharge (PD) can provide a useful forewarning of asset failure in electricity substations. A significant proportion of assets are susceptible to PD due to incipient weakness in their dielectrics. This paper examines a low cost approach for uninterrupted monitoring of PD using a network of inexpensive radio sensors to sample the spatial patterns of PD received signal strength. Machine learning techniques are proposed for localisation of PD sources. Specifically, two models based on Support Vector Machines (SVMs) are developed: Support Vector Regression (SVR) and Least-Squares Support Vector Regression (LSSVR). These models construct an explicit regression surface in a high dimensional feature space for function estimation. Their performance is compared to that of artificial neural network (ANN) models. The results show that both SVR and LSSVR methods are superior to ANNs in accuracy. LSSVR approach is particularly recommended as practical alternative for PD source localisation due to it low complexity

    Apoptosis, autophagy and ER stress in mevalonate cascade inhibition-induced cell death of human atrial fibroblasts

    Get PDF
    3-hydroxy-3-methyl-glutaryl-CoA reductase inhibitors (statins) are cholesterol-lowering drugs that exert other cellular effects and underlie their beneficial health effects, including those associated with myocardial remodeling. We recently demonstrated that statins induces apoptosis and autophagy in human lung mesenchymal cells. Here, we extend our knowledge showing that statins simultaneously induces activation of the apoptosis, autophagy and the unfolded protein response (UPR) in primary human atrial fibroblasts (hATF). Thus we tested the degree to which coordination exists between signaling from mitochondria, endoplasmic reticulum and lysosomes during response to simvastatin exposure. Pharmacologic blockade of the activation of ER-dependent cysteine-dependent aspartate-directed protease (caspase)-4 and lysosomal cathepsin-B and -L significantly decreased simvastatin-induced cell death. Simvastatin altered total abundance and the mitochondrial fraction of proapoptotic and antiapoptotic proteins, while c-Jun N-terminal kinase/stress-activated protein kinase mediated effects on B-cell lymphoma 2 expression. Chemical inhibition of autophagy flux with bafilomycin-A1 augmented simvastatin-induced caspase activation, UPR and cell death. In mouse embryonic fibroblasts that are deficient in autophagy protein 5 and refractory to autophagy induction, caspase-7 and UPR were hyper-induced upon treatment with simvastatin. These data demonstrate that mevalonate cascade inhibition-induced death of hATF manifests from a complex mechanism involving co-regulation of apoptosis, autophagy and UPR. Furthermore, autophagy has a crucial role in determining the extent of ER stress, UPR and permissiveness of hATF to cell death induced by statins

    Predictive value of PD-L1 and TMB for short-term efficacy prognosis in non-small cell lung cancer and construction of prediction models

    Get PDF
    ObjectiveTo investigate the correlation between programmed death ligand 1(PD-L1), tumor mutation burden (TMB) and the short-term efficacy and clinical characteristics of anti-PD-1 immune checkpoint inhibitor combination chemotherapy in NSCLC patients. The efficacy of the prediction model was evaluated.MethodsA total of 220 NSCLC patients receiving first-line treatment with anti-PD-1 immune checkpoint inhibitor combined with chemotherapy were retrospectively collected. The primary endpoint was short-term efficacy ORR. The correlation between short-term efficacy, PD-L1, TMB, and clinical characteristics using χ2 test or t-test was evaluated. Screen the independent prognostic factors using univariate and multivariate logistic regression analyses, and construct a nomogram prediction model using the “rms” package in R software. Using receiver operating characteristic (ROC) curve analysis to evaluate the independent Prognostic factors and the prediction model. Using decision curve analysis (DCA) to verify the superiority of the prediction model.ResultsThe mean values of PD-L1, TMB, neutrophils, lymphocytes, neutrophil-to-lymphocyte ratio, and albumin were the highest in the ORR group, PD-L1 expression and TMB correlated with epidermal growth factor receptor expression. Multivariate analyses showed that PD-L1, TMB, and neutrophil were independent prognostic factors for ORR. The area under the ROC curve (AUC) values of the ROC constructed based on these three indicators were 0.7104, 0.7139, and 0.7131, respectively. The AUC value under the ROC of the nomogram model was 0.813. The DCA of the model showed that all three indicators used together to build the prediction model of the net return were higher than those of the single indicator prediction model.ConclusionPD-L1, TMB, and neutrophils are independent prognostic factors for short-term efficacy. The nomogram prediction model constructed using these three indicators can further improve predictive efficacy of ICIs in patients with NSCLC

    Herpes Simplex Virus 34.5 Interferes with Autophagosome Maturation and Antigen Presentation in Dendritic Cells

    Get PDF
    The cellular autophagy response induced by herpes simplex virus 1 (HSV-1) is countered by the viral γ34.5 protein. γ34.5 modulates autophagy by binding to the host autophagy protein Beclin-1 and through this binding inhibits the formation of autophagosomes in fibroblasts and neurons. In contrast, in this study dendritic cells (DCs) infected with HSV-1 showed an accumulation of autophagosomes and of the long-lived protein p62. No such accumulations were observed in DCs infected with a γ34.5-null virus or a virus lacking the Beclin-binding domain (BBD) of γ34.5. To explore this further, we established stably transduced DC lines to show that γ34.5 expression alone induced autophagosome accumulation yet prevented p62 degradation. In contrast, DCs expressing a BBD-deleted mutant of γ34.5 were unable to modulate autophagy. DCs expressing γ34.5 were less capable of stimulating T-cell activation and proliferation in response to intracellular antigens, demonstrating an immunological consequence of inhibiting autophagy. Taken together, these data show that in DCs, γ34.5 antagonizes the maturation of autophagosomes and T cell activation in a BBD-dependent manner, illustrating a unique interface between HSV and autophagy in antigen-presenting cells

    Gemcitabine/cannabinoid combination triggers autophagy in pancreatic cancer cells through a ROS-mediated mechanism

    Get PDF
    Gemcitabine (GEM, 2′,2′-difluorodeoxycytidine) is currently used in advanced pancreatic adenocarcinoma, with a response rate of < 20%. The purpose of our work was to improve GEM activity by addition of cannabinoids. Here, we show that GEM induces both cannabinoid receptor-1 (CB1) and cannabinoid receptor-2 (CB2) receptors by an NF-κB-dependent mechanism and that its association with cannabinoids synergistically inhibits pancreatic adenocarcinoma cell growth and increases reactive oxygen species (ROS) induced by single treatments. The antiproliferative synergism is prevented by the radical scavenger N-acetyl--cysteine and by the specific NF-κB inhibitor BAY 11-7085, demonstrating that the induction of ROS by GEM/cannabinoids and of NF-κB by GEM is required for this effect. In addition, we report that neither apoptotic nor cytostatic mechanisms are responsible for the synergistic cell growth inhibition, which is strictly associated with the enhancement of endoplasmic reticulum stress and autophagic cell death. Noteworthy, the antiproliferative synergism is stronger in GEM-resistant pancreatic cancer cell lines compared with GEM-sensitive pancreatic cancer cell lines. The combined treatment strongly inhibits growth of human pancreatic tumor cells xenografted in nude mice without apparent toxic effects. These findings support a key role of the ROS-dependent activation of an autophagic program in the synergistic growth inhibition induced by GEM/cannabinoid combination in human pancreatic cancer cells

    Hostile Takeover by Plasmodium: Reorganization of Parasite and Host Cell Membranes during Liver Stage Egress

    Get PDF
    The protozoan parasite Plasmodium is transmitted by female Anopheles mosquitoes and undergoes obligatory development within a parasitophorous vacuole in hepatocytes before it is released into the bloodstream. The transition to the blood stage was previously shown to involve the packaging of exoerythrocytic merozoites into membrane-surrounded vesicles, called merosomes, which are delivered directly into liver sinusoids. However, it was unclear whether the membrane of these merosomes was derived from the parasite membrane, the parasitophorous vacuole membrane or the host cell membrane. This knowledge is required to determine how phagocytes will be directed against merosomes. Here, we fluorescently label the candidate membranes and use live cell imaging to show that the merosome membrane derives from the host cell membrane. We also demonstrate that proteins in the host cell membrane are lost during merozoite liberation from the parasitophorous vacuole. Immediately after the breakdown of the parasitophorous vacuole membrane, the host cell mitochondria begin to degenerate and protein biosynthesis arrests. The intact host cell plasma membrane surrounding merosomes allows Plasmodium to mask itself from the host immune system and bypass the numerous Kupffer cells on its way into the bloodstream. This represents an effective strategy for evading host defenses before establishing a blood stage infection

    Proton pump inhibition induces autophagy as a survival mechanism following oxidative stress in human melanoma cells

    Get PDF
    Proton pump inhibitors (PPI) target tumour acidic pH and have an antineoplastic effect in melanoma. The PPI esomeprazole (ESOM) kills melanoma cells through a caspase-dependent pathway involving cytosolic acidification and alkalinization of tumour pH. In this paper, we further investigated the mechanisms of ESOM-induced cell death in melanoma. ESOM rapidly induced accumulation of reactive oxygen species (ROS) through mitochondrial dysfunctions and involvement of NADPH oxidase. The ROS scavenger N-acetyl--cysteine (NAC) and inhibition of NADPH oxidase significantly reduced ESOM-induced cell death, consistent with inhibition of cytosolic acidification. Autophagy, a cellular catabolic pathway leading to lysosomal degradation and recycling of proteins and organelles, represents a defence mechanism in cancer cells under metabolic stress. ESOM induced the early accumulation of autophagosomes, at the same time reducing the autophagic flux, as observed by WB analysis of LC3-II accumulation and by fluorescence microscopy. Moreover, ESOM treatment decreased mammalian target of rapamycin signalling, as reduced phosphorylation of p70-S6K and 4-EBP1 was observed. Inhibition of autophagy by knockdown of Atg5 and Beclin-1 expression significantly increased ESOM cytotoxicity, suggesting a protective role for autophagy in ESOM-treated cells. The data presented suggest that autophagy represents an adaptive survival mechanism to overcome drug-induced cellular stress and cytotoxicity, including alteration of pH homeostasis mediated by proton pump inhibition

    Roadmap on label-free super-resolution imaging

    Get PDF
    Label-free super-resolution (LFSR) imaging relies on light-scattering processes in nanoscale objects without a need for fluorescent (FL) staining required in super-resolved FL microscopy. The objectives of this Roadmap are to present a comprehensive vision of the developments, the state-of-the-art in this field, and to discuss the resolution boundaries and hurdles that need to be overcome to break the classical diffraction limit of the label-free imaging. The scope of this Roadmap spans from the advanced interference detection techniques, where the diffraction-limited lateral resolution is combined with unsurpassed axial and temporal resolution, to techniques with true lateral super-resolution capability that are based on understanding resolution as an information science problem, on using novel structured illumination, near-field scanning, and nonlinear optics approaches, and on designing superlenses based on nanoplasmonics, metamaterials, transformation optics, and microsphere-assisted approaches. To this end, this Roadmap brings under the same umbrella researchers from the physics and biomedical optics communities in which such studies have often been developing separately. The ultimate intent of this paper is to create a vision for the current and future developments of LFSR imaging based on its physical mechanisms and to create a great opening for the series of articles in this field

    Roadmap on Label-Free Super-resolution Imaging

    Get PDF
    Label-free super-resolution (LFSR) imaging relies on light-scattering processes in nanoscale objects without a need for fluorescent (FL) staining required in super-resolved FL microscopy. The objectives of this Roadmap are to present a comprehensive vision of the developments, the state-of-the-art in this field, and to discuss the resolution boundaries and hurdles that need to be overcome to break the classical diffraction limit of the label-free imaging. The scope of this Roadmap spans from the advanced interference detection techniques, where the diffraction-limited lateral resolution is combined with unsurpassed axial and temporal resolution, to techniques with true lateral super-resolution capability that are based on understanding resolution as an information science problem, on using novel structured illumination, near-field scanning, and nonlinear optics approaches, and on designing superlenses based on nanoplasmonics, metamaterials, transformation optics, and microsphere-assisted approaches. To this end, this Roadmap brings under the same umbrella researchers from the physics and biomedical optics communities in which such studies have often been developing separately. The ultimate intent of this paper is to create a vision for the current and future developments of LFSR imaging based on its physical mechanisms and to create a great opening for the series of articles in this field.Peer reviewe

    Hepatitis C virus NS5A-regulated gene expression and signaling revealed via microarray and comparative promoter analyses

    Full text link
    Most individuals exposed to hepatitis C virus (HCV) become chronically infected and are predisposed to liver disease. The mechanisms underlying viral persistence and disease progression are unknown. A role for the HCV NS5A protein in viral replication and interferon resistance has been demonstrated. To identify mechanisms affected by NS5A, we analyzed the gene expression of Huh7 cells expressing NS5A and control cells using oligonucleotide microarrays. A set of 103 genes (43 up-regulated, 60 down-regulated) whose expression was modified by at least twofold was selected. These included genes involved in cell adhesion and motility, calcium homeostasis, lipid transport and metabolism, and genes regulating immune responses. The finding of modulated expression of genes related to the TGF-Β superfamily and liver fibrosis was observed. Interestingly, both the tumor necrosis factor and lymphotoxin beta receptors were down-regulated by NS5A. Similar data were obtained following expression of four NS5A mutants obtained from patients who were not responsive or were sensitive to interferon therapy. Through computational analysis, we determined that 39 of the 43 genes up-regulated by NS5A contained one or more nuclear factor ΚB (NF-ΚB) binding sites within their promoter region. Using the Gibbs sampling method, we also detected enrichment of NF-ΚB consensus binding sites in the upstream regions of the 43 coexpressed genes. Activation of NF-ΚB by NS5A was subsequently demonstrated in luciferase reporter assays. Adenovirus-mediated expression of IΚBΑ reverted NS5A mediated up-regulation of gene expression. In conclusion , this study suggests a role of NS5A and NF-ΚB in HCV pathogenesis and related liver disease. Supplementary material for this article can be found on the H EPATOLOGY website ( http://interscience.wiley.com/jpages/0270-9139/suppmat/index.html ). (H EPATOLOGY 2004;40:708–718.)Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/34800/1/20371_ftp.pd
    corecore