176 research outputs found
PhysicsGP: A Genetic Programming Approach to Event Selection
We present a novel multivariate classification technique based on Genetic
Programming. The technique is distinct from Genetic Algorithms and offers
several advantages compared to Neural Networks and Support Vector Machines. The
technique optimizes a set of human-readable classifiers with respect to some
user-defined performance measure. We calculate the Vapnik-Chervonenkis
dimension of this class of learning machines and consider a practical example:
the search for the Standard Model Higgs Boson at the LHC. The resulting
classifier is very fast to evaluate, human-readable, and easily portable. The
software may be downloaded at: http://cern.ch/~cranmer/PhysicsGP.htmlComment: 16 pages 9 figures, 1 table. Submitted to Comput. Phys. Commu
Editorial: Bruce Lee's martial legacies
This is the editorial for a special themed issue of the journal Martial Arts Studies, whose focus is 'Bruce Lee's Martial Legacies'
Spatially resolved photoluminescence analysis of Se passivation and defect formation in CdSeTe thin films
CdTe is the most commercially successful thin-film photovoltaic technology to
date. The recent development of Se-alloyed CdSeTe layers in CdTe
solar cells has led to higher device efficiencies, due to a lowered bandgap
improving the photocurrent, improved voltage characteristics and longer carrier
lifetimes. Evidence from cross-sectional electron microscopy is widely believed
to indicate that Se passivates defects in CdSeTe solar cells, and
that this is the reason for better lifetimes and voltages in these devices.
Here, we utilise spatially resolved photoluminescence measurements of
CdSeTe thin films on glass to study the effects of Se on carrier
recombination in the material, isolated from the impact of conductive
interfaces and without the need to prepare cross-sections through the samples.
We find further evidence to support Se passivation of grain boundaries, but
also identify an associated increase in below-bandgap photoluminescence that
indicates the presence of Se-enhanced luminescent defects. Our results show
that Se treatment, in tandem with Cl passivation, does increase radiative
efficiencies. However, the simultaneous enhancement of defects within the grain
interiors suggests that although it is overall beneficial, Se incorporation may
still ultimately limit the maximum attainable efficiency of
CdSeTe solar cells
Primary culture of capillary endothelial cells from the spiral ligament and stria vascularis of bovine inner ear
Methods for isolation and culture of microvascular endothelial cells of the inner ear were devised to provide an in-vitro system for studying endothelial functions in this tissue. Capillaries from the stria vascularis and spiral ligament were treated enzymatically to free them from surrounding tissue. Contamination by extraneous tissue was minimized by banding capillary segments in Percoll gradients and culture in plasma-derived serum on a fibronectin-coated substrate. Although only small amounts of inner ear tissue were available, tritiated thymidine autoradiography demonstrated that considerable growth in culture was possible. Addition of heparin and endothelial cell growth supplement to the medium enhanced proliferation. The endothelial origin of the cultured cells was confirmed by immunofluorescent demonstration of the presence of Factor VIII-related antigen and angiotensin-converting enzyme. In addition, tight junctions between cells were observed in both thin sections and platinum replicas obtained by freezefracture techniques. Endothelial cells from neither the stria vascularis nor the spiral ligament allowed passage of horseradish peroxidase across the monolayer during a 5-min period. However, endothelial cells from the stria vascularis exhibited a greater amount of pinocytotic activity than those of the spiral ligament, a difference that is also observed in vivo. Methods for expanding a small population of endothelial cells with retention of specialized properties into one of sufficient size for morphologic and biochemical studies have been demonstrated for the inner ear.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47680/1/441_2004_Article_BF00214566.pd
Sugars and cuticular waxes impact sugarcane aphid (\u3ci\u3eMelanaphis sacchari\u3c/i\u3e) colonization on different developmental stages of sorghum
Sugarcane aphid (SCA; Melanaphis sacchari) is a devastating pest of sorghum (Sorghum bicolor) that colonizes sorghum plants at different growth stages. Leaf surface characteristics and sugars often influence aphid settling and feeding on host plants. However, how changes in cuticular waxes and sugar levels affect SCA establishment and feeding at different development stages of sorghum have not been explored. In this study, two- and six-weekold BTx623 plants, a reference line of sorghum, was used to evaluate plant-aphid interactions. Monitoring aphid feeding behavior using Electrical Penetration Graph (EPG) technique revealed that aphids spent more time in the sieve element phase of six-week-old plants compared to two-week-old plants. Significant differences were found in the time spent to reach the first sieve element and pathway phases between the two- and six-week-old plants. However, no-choice aphid bioassays displayed that SCA population numbers were higher in two-week-old plants compared to six-week-old plants. Differences in the abundance of wax and sugar contents were analyzed to determine how these plant components influenced aphid feeding and proliferation. Among the cuticular wax compounds analyzed, α-amyrin and isoarborinone increased after 10 days of aphid infestation only in six-weekold plants. Trehalose content was significantly increased by SCA feeding on two- and six-week-old plants. Furthermore, SCA feeding depressed sucrose content and increased levels of glucose and fructose in two-weekold but not in six-week-old plants. Overall, our study indicates that plant age is a determinant for SCA feeding, and subtle changes in triterpenoids and available sugars influence SCA establishment on sorghum plants
Signaling by AWC Olfactory Neurons Is Necessary for Caenorhabditis elegans' Response to Prenol, an Odor Associated with Nematode-Infected Insects
Chemosensation plays a role in the behaviors and life cycles of numerous organisms, including nematodes. Many guilds of nematodes exist, ranging from the free-living Caenorhabditis elegans to various parasitic species such as entomopathogenic nematodes (EPNs), which are parasites of insects. Despite ecological differences, previous research has shown that both EPNs and C. elegans respond to prenol (3-methyl-2-buten-1-ol), an odor associated with EPN infections. However, it is unclear how C. elegans responds to prenol. By utilizing natural variation and genetic neuron ablation to investigate the response of C. elegans to prenol, we found that the AWC neurons are involved in the detection of prenol and that several genes (including dcap-1, dcap-2, and clec-39) influence response to this odorant. Furthermore, we identified that the response to prenol is mediated by the canonically proposed pathway required for other AWC-sensed attractants. However, upon testing genetically diverse isolates, we found that the response of some strains to prenol differed from their response to isoamyl alcohol, suggesting that the pathways mediating response to these two odorants may be genetically distinct. Further, evaluations leveraging natural variation and genome wide association revealed specific genes that influence nematode behavior and provide a foundation for future studies to better understand the role of prenol in nematode behavioral ecology
Protein proximity networks and functional evaluation of the casein kinase 1 gamma family reveal unique roles for CK1γ3 in WNT signaling
Aberrant activation or suppression of WNT/β-catenin signaling contributes to cancer initiation and progression, neurodegeneration, and bone disease. However, despite great need and more than 40 years of research, targeted therapies for the WNT pathway have yet to be fully realized. Kinases are considered exceptionally druggable and occupy key nodes within the WNT signaling network, but several pathway-relevant kinases remain understudied and dark. Here, we studied the function of the casein kinase 1γ (CSNK1γ) subfamily of human kinases and their roles in WNT signaling. miniTurbo-based proximity biotinylation and mass spectrometry analysis of CSNK1γ1, CSNK1γ2, and CSNK1γ3 revealed numerous components of the β-catenin-dependent and β-catenin-independent WNT pathways. In gain-of-function experiments, we found that CSNK1γ3 but not CSNK1γ1 or CSNK1γ2 activated β-catenin-dependent WNT signaling, with minimal effect on other signaling pathways. We also show that within the family, CSNK1γ3 expression uniquely induced low-density lipoprotein receptor-related protein 6 phosphorylation, which mediates downstream WNT signaling transduction. Conversely, siRNA-mediated silencing of CSNK1γ3 alone had no impact on WNT signaling, though cosilencing of all three family members decreased WNT pathway activity. Finally, we characterized two moderately selective and potent small-molecule inhibitors of the CSNK1γ family. We show that these inhibitors and a CSNK1γ3 kinase-dead mutant suppressed but did not eliminate WNT-driven low-density lipoprotein receptor-related protein 6 phosphorylation and β-catenin stabilization. Our data suggest that while CSNK1γ3 expression uniquely drives pathway activity, potential functional redundancy within the family necessitates loss of all three family members to suppress the WNT signaling pathway
- …