76 research outputs found
Lack of association between angiotensin-converting enzyme and dementia of the Alzheimer’s type in an elderly Arab population in Wadi Ara, Israel
The angiotensin-converting enzyme (ACE), a protease involved in blood pressure regulation, has been implicated as an important candidate gene for Alzheimer’s disease (AD). This study investigated whether the ACE gene insertion–deletion (ID) polymorphism is associated with risk of developing dementia of Alzheimer’s type (DAT) in an Arab–Israeli community, a unique genetic isolate where there is a high prevalence of DAT. In contrast to several other studies, we found no evidence of an association between this polymorphism and either DAT or age-related cognitive decline (ARCD)
Neurogenetic and epigenetic aspects of cannabinoids
Cannabis is one of the most commonly used and abused illicit drugs in the world today. The United States (US) currently has the highest annual prevalence rate of cannabis consumption in the world, 17.9% in individuals aged 12 or older, and it is on the rise. With increasing cannabis use comes the potential for an increase in abuse, and according to the Substance Abuse and Mental Health Services Administration (SAMHSA), approximately 5.1% of Americans had Cannabis Use Disorder (CUD) in 2020. Research has shown that genetics and epigenetics play a significant role in cannabis use and CUD. In fact, approximately 50-70% of liability to CUD and 40-48% of cannabis use initiation have been found to be the result of genetic factors. Cannabis usage and CUD have also been linked to an increased risk of psychiatric disorders and Reward Deficiency Syndrome (RDS) subsets like schizophrenia, depression, anxiety, and substance use disorder. Comprehension of the genetic and epigenetic aspects of cannabinoids is necessary for future research, treatment plans, and the production of pure cannabinoid compounds, which will be essential for FDA approval. In conclusion, having a better understanding of the epigenetic and genetic underpinnings of cannabis use, CUD, and the endocannabinoid system as a whole will aid in the development of effective FDA-approved treatment therapies and the advancement of personalized medicine
Potential Link Between Exercise and N-Methyl-D-Aspartate Glutamate Receptors in Alcohol Use Disorder: Implications for Therapeutic Strategies
Susan Sedhom,1 Nikki Hammond,1 Kyriaki Z Thanos,1 Kenneth Blum,2,3 Igor Elman,4 Abdalla Bowirrat,3 Catherine Anne Dennen,5 Panayotis K Thanos1 1Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA; 2Division of Addiction Research & Education, Center for Sports, Exercise & Global Mental Health, Western University Health Sciences, Pomona, CA, USA; 3Department of Molecular Biology and Adelson School of Medicine, Ariel University, Ariel, Israel; 4Department of Psychiatry, Harvard School of Medicine, Cambridge Health Alliance, Cambridge, MA, USA; 5Department of Family Medicine, Jefferson Health Northeast, Philadelphia, PA, USACorrespondence: Panayotis K Thanos; Kenneth Blum, Email [email protected]; [email protected]: Alcohol use disorder (AUD) is a significant risk factor, accounting for approximately 13% of all deaths in the US. AUD not only destroys families but also causes economic losses due to reduced productivity, absenteeism, and healthcare expenses. Statistics revealing the sustained number of individuals affected by AUD over the years underscore the need for further understanding of the underlying pathophysiology to advance novel therapeutic strategies. Previous research has implicated the limbic brain regions N-methyl-D-aspartate glutamate receptors (NMDAR) in the emotional and behavioral effects of AUD. Given that aerobic exercise can modulate NMDAR activity and sensitivity to alcohol, this review presents a summary of clinical and basic science studies on NMDAR levels induced by alcohol consumption, as well as acute and protracted withdrawal, highlighting the potential role of aerobic exercise as an adjunctive therapy for AUD. Based on our findings, the utility of exercise in the modulation of reward-linked receptors and AUD may be mediated by its effects on NMDA signaling. These data support further consideration of the potential of aerobic exercise as a promising adjunctive therapy for AUD.Keywords: exercise, alcohol use disorder, AUD, NMDA receptors, brain, rewar
Genetic addiction risk severity assessment identifies polymorphic reward genes as antecedents to reward deficiency syndrome (RDS) hypodopaminergia\u27s effect on addictive and non-addictive behaviors in a nuclear family
This case series presents the novel genetic addiction risk score (GARS), which shows a high prevalence of polymorphic risk alleles of reward genes in a nuclear family with multiple reward deficiency syndrome (RDS) behavioral issues expressing a hypodopaminergic antecedent. The family consists of a mother, father, son, and daughter. The mother experienced issues with focus, memory, anger, and amotivational syndrome. The father experienced weight issues and depression. The son experienced heavy drinking, along with some drug abuse and anxiety. The daughter experienced depression, lethargy, brain fog, focus issues, and anxiety, among others. A major clinical outcome of the results presented to the family members helped reduce personal guilt and augment potential hope for future healing. Our laboratory\u27s prior research established that carriers of four or more alleles measured by GARS
MYORG-related disease is associated with central pontine calcifications and atypical parkinsonism
Objective: To identify the phenotypic, neuroimaging, and genotype-phenotype expression of MYORG mutations. Methods: Using next-generation sequencing, we screened 86 patients with primary familial brain calcification (PFBC) from 60 families with autosomal recessive or absent family history that were negative for mutations in SLC20A2, PDGFRB, PDGBB, and XPR1. In-depth phenotyping and neuroimaging investigations were performed in all cases reported here. Results: We identified 12 distinct deleterious MYORG variants in 7 of the 60 families with PFBC. Overall, biallelic MYORG mutations accounted for 11.6% of PFBC families in our cohort. A heterogeneous phenotypic expression was identified within and between families with a median age at onset of 56.4 years, a variable combination of parkinsonism, cerebellar signs, and cognitive decline. Psychiatric disturbances were not a prominent feature. Cognitive assessment showed impaired cognitive function in 62.5% of cases. Parkinsonism associated with vertical nuclear gaze palsy was the initial clinical presentation in 1/3 of cases and was associated with central pontine calcifications. Cerebral cortical atrophy was present in 37% of cases. Conclusions: This large, multicentric study shows that biallelic MYORG mutations represent a significant proportion of autosomal recessive PFBC. We recommend screening MYORG mutations in all patients with primary brain calcifications and autosomal recessive or negative family history, especially when presenting clinically as atypical parkinsonism and with pontine calcification on brain CT
The dopamine D2 receptor mediates approach-avoidance tendencies in smokers
Dopamine D2 receptors (DRD2) have been strongly implicated in reward processing of natural stimuli and drugs. By using the Approach-Avoidance Task (AAT), we recently demonstrated that smokers show an increased approach bias toward smoking-related cues but not toward naturally-rewarding stimuli. Here we examined the contribution of the DRD2 Taq1B polymorphism to smokers’ and non-smokers’ responsivity toward smoking versus naturally-rewarding stimuli in the AAT. Smokers carrying the minor B1 allele of the DRD2 Taq1B polymorphism showed reduced approach behavior for food-related pictures compared to non-smokers with the same allele. In the group of smokers, a higher approach-bias toward smoking-related compared to food-related pictures was found in carriers of the B1 allele. This pattern was not evident in smokers homozygous for the B2 allele. Additionally, smokers with the B1 allele reported fewer attempts to quit smoking relative to smokers homozygous for the B2 allele. This is the first study demonstrating that behavioral shifts in response to smoking relative to natural rewards in smokers are mediated by the DRD2 Taq1B polymorphism. Our results indicate a reduced natural-reward brain reactivity in smokers with a genetically determined decrease in dopaminergic activity (i.e., reduction of DRD2 availability). It remains to be determined whether this pattern might be related to a different outcome after psychological cessation interventions, i.e. AAT modification paradigms, in smokers
SLC6A3 and body mass index in the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial
<p>Abstract</p> <p>Background</p> <p>To investigate the contribution of the dopamine transporter to dopaminergic reward-related behaviors and anthropometry, we evaluated associations between polymorphisms at the dopamine transporter gene(<it>SLC6A3</it>) and body mass index (BMI), among participants in the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial.</p> <p>Methods</p> <p>Four polymorphisms (rs6350, rs6413429, rs6347 and the 3' variable number of tandem repeat (3' VNTR) polymorphism) at the <it>SLC6A3 </it>gene were genotyped in 2,364 participants selected from the screening arm of PLCO randomly within strata of sex, age and smoking history. Height and weight at ages 20 and 50 years and baseline were assessed by questionnaire. BMI was calculated and categorized as underweight, normal, overweight and obese (<18.5, 18.5–24.9, 25.0–29.9, or ≥ 30 kg/m<sup>2</sup>, respectively). Odds ratios (ORs) and 95% confidence intervals (CIs) of <it>SLC6A3 </it>genotypes and haplotypes were computed using conditional logistic regression.</p> <p>Results</p> <p>Compared with individuals having a normal BMI, obese individuals at the time of the baseline study questionnaire were less likely to possess the <it>3' </it>VNTR variant allele with 9 copies of the repeated sequence in a dose-dependent model (** is referent; OR<sub>*9 </sub>= 0.80, OR<sub>99 </sub>= 0.47, p<sub>trend </sub>= 0.005). Compared with individuals having a normal BMI at age 50, overweight individuals (A-C-G-* is referent; OR<sub>A-C-G-9 </sub>= 0.80, 95% CI 0.65–0.99, p = 0.04) and obese individuals (A-C-G-* is referent; OR<sub>A-C-G-9 </sub>= 0.70, 95% CI 0.49–0.99, p = 0.04) were less likely to possess the haplotype with the 3'variant allele (A-C-G-9).</p> <p>Conclusion</p> <p>Our results support a role of genetic variation at the dopamine transporter gene, <it>SLC6A3</it>, as a modifier of BMI.</p
Generational Association Studies of Dopaminergic Genes in Reward Deficiency Syndrome (RDS) Subjects: Selecting Appropriate Phenotypes for Reward Dependence Behaviors
Abnormal behaviors involving dopaminergic gene polymorphisms often reflect an insufficiency of usual feelings of satisfaction, or Reward Deficiency Syndrome (RDS). RDS results from a dysfunction in the “brain reward cascade,” a complex interaction among neurotransmitters (primarily dopaminergic and opioidergic). Individuals with a family history of alcoholism or other addictions may be born with a deficiency in the ability to produce or use these neurotransmitters. Exposure to prolonged periods of stress and alcohol or other substances also can lead to a corruption of the brain reward cascade function. We evaluated the potential association of four variants of dopaminergic candidate genes in RDS (dopamine D1 receptor gene [DRD1]; dopamine D2 receptor gene [DRD2]; dopamine transporter gene [DAT1]; dopamine beta-hydroxylase gene [DBH]). Methodology: We genotyped an experimental group of 55 subjects derived from up to five generations of two independent multiple-affected families compared to rigorously screened control subjects (e.g., N = 30 super controls for DRD2 gene polymorphisms). Data related to RDS behaviors were collected on these subjects plus 13 deceased family members. Results: Among the genotyped family members, the DRD2 Taq1 and the DAT1 10/10 alleles were significantly (at least p < 0.015) more often found in the RDS families vs. controls. The TaqA1 allele occurred in 100% of Family A individuals (N = 32) and 47.8% of Family B subjects (11 of 23). No significant differences were found between the experimental and control positive rates for the other variants. Conclusions: Although our sample size was limited, and linkage analysis is necessary, the results support the putative role of dopaminergic polymorphisms in RDS behaviors. This study shows the importance of a nonspecific RDS phenotype and informs an understanding of how evaluating single subset behaviors of RDS may lead to spurious results. Utilization of a nonspecific “reward” phenotype may be a paradigm shift in future association and linkage studies involving dopaminergic polymorphisms and other neurotransmitter gene candidates
- …