120 research outputs found
Influence of Off-Sun-Earth Line Distance on the Accuracy of L1 Solar Wind Monitoring
Upstream solar wind measurements from near the L1 Lagrangian point are commonly used to investigate solar wind-magnetosphere coupling. The off-Sun-Earth line distance of such solar wind monitors can be large, up to 100 RE. We investigate how the correlation between measurements of the interplanetary magnetic field and associated ionospheric responses deteriorates as the off-Sun-Earth line distance increases. Specifically, we use the magnitude and polarity of the dayside region 0 field-aligned currents (R0 FACs) as a measure of interplanetary magnetic field (IMF) BY-associated magnetic tension effects on newly-reconnected field lines, related to the Svalgaard-Mansurov effect. The R0 FACs are derived from Advanced Magnetosphere and Planetary Electrodynamics Response Experiment measurements by a principal component analysis, for the years 2010–2016. We perform cross-correlation analyses between time-series of IMF BY, measured by the Wind spacecraft and propagated to the nose of the bow shock by the OMNI technique, and these R0 FAC measurements. Typically, in the summer hemisphere, cross-correlation coefficients between 0.6 and 0.9 are found. However, there is a reduction of order 0.1–0.15 in correlation coefficient between periods when Wind is close to (within 45 RE) and distant from (beyond 70 RE) the Sun-Earth line. We find a time-lag of around 17 min between predictions of the arrival of IMF features at the bow shock and their effect in the ionosphere, irrespective of the location of Wind.publishedVersio
Nonlocal Equation of State in Anisotropic Static Fluid Spheres in General Relativity
We show that it is possible to obtain credible static anisotropic spherically
symmetric matter configurations starting from known density profiles and
satisfying a nonlocal equation of state. These particular types of equation of
state describe, at a given point, the components of the corresponding
energy-momentum tensor not only as a function at that point, but as a
functional throughout the enclosed configuration. To establish the physical
plausibility of the proposed family of solutions satisfying nonlocal equation
of state, we study the constraints imposed by the junction and energy
conditions on these bounded matter distributions.
We also show that it is possible to obtain physically plausible static
anisotropic spherically symmetric matter configurations, having nonlocal
equations of state\textit{,}concerning the particular cases where the radial
pressure vanishes and, other where the tangential pressures vanishes. The later
very particular type of relativistic sphere with vanishing tangential stresses
is inspired by some of the models proposed to describe extremely magnetized
neutron stars (magnetars) during the transverse quantum collapse.Comment: 21 pages, 1 figure, minor changes in the text, references added, two
new solutions studie
The KMOS Redshift One Spectroscopic Survey (KROSS): the Tully–Fisher relation at z ∼ 1
We present the stellar mass (M*), and K-corrected K-band absolute magnitude (MK) Tully–Fisher relations (TFRs) for subsamples of the 584 galaxies spatially resolved in H α emission by the KMOS Redshift One Spectroscopic Survey (KROSS). We model the velocity field of each of the KROSS galaxies and extract a rotation velocity, V80 at a radius equal to the major axis of an ellipse containing 80 per cent of the total integrated H α flux. The large sample size of KROSS allowed us to select 210 galaxies with well-measured rotation speeds. We extract from this sample a further 56 galaxies that are rotationally supported, using the stringent criterion V80/σ > 3, where σ is the flux weighted average velocity dispersion. We find the MK and M* TFRs for this subsample to be MK/mag=(−7.3±0.9)×[(log(V80/km s−1)−2.25]−23.4±0.2MK/mag=(−7.3±0.9)×[(log(V80/km s−1)−2.25]−23.4±0.2, and log(M∗/M⊙)=(4.7±0.4)×[(log(V80/km s−1)−2.25]+10.0±0.3log(M∗/M⊙)=(4.7±0.4)×[(log(V80/km s−1)−2.25]+10.0±0.3, respectively. We find an evolution of the M* TFR zero-point of −0.41 ± 0.08 dex over the last ∼8 billion years. However, we measure no evolution in the MK TFR zero-point over the same period. We conclude that rotationally supported galaxies of a given dynamical mass had less stellar mass at z ∼ 1 than the present day, yet emitted the same amounts of K-band light. The ability of KROSS to differentiate, using integral field spectroscopy with KMOS, between those galaxies that are rotationally supported and those that are not explains why our findings are at odds with previous studies without the same capabilities
Active Galactic Nuclei at the Crossroads of Astrophysics
Over the last five decades, AGN studies have produced a number of spectacular
examples of synergies and multifaceted approaches in astrophysics. The field of
AGN research now spans the entire spectral range and covers more than twelve
orders of magnitude in the spatial and temporal domains. The next generation of
astrophysical facilities will open up new possibilities for AGN studies,
especially in the areas of high-resolution and high-fidelity imaging and
spectroscopy of nuclear regions in the X-ray, optical, and radio bands. These
studies will address in detail a number of critical issues in AGN research such
as processes in the immediate vicinity of supermassive black holes, physical
conditions of broad-line and narrow-line regions, formation and evolution of
accretion disks and relativistic outflows, and the connection between nuclear
activity and galaxy evolution.Comment: 16 pages, 5 figures; review contribution; "Exploring the Cosmic
Frontier: Astrophysical Instruments for the 21st Century", ESO Astrophysical
Symposia Serie
Isotopic signatures of methane emissions from tropical fires, agriculture and wetlands: the MOYA and ZWAMPS flights
We report methane isotopologue data from aircraft and ground measurements in Africa and South America. Aircraft campaigns sampled strong methane fluxes over tropical papyrus wetlands in the Nile, Congo and Zambezi basins, herbaceous wetlands in Bolivian southern Amazonia, and over fires in African woodland, cropland and savannah grassland. Measured methane δ13CCH4 isotopic signatures were in the range −55 to −49‰ for emissions from equatorial Nile wetlands and agricultural areas, but widely −60 ± 1‰ from Upper Congo and Zambezi wetlands. Very similar δ13CCH4 signatures were measured over the Amazonian wetlands of NE Bolivia (around −59‰) and the overall δ13CCH4 signature from outer tropical wetlands in the southern Upper Congo and Upper Amazon drainage plotted together was −59 ± 2‰. These results were more negative than expected. For African cattle, δ13CCH4 values were around −60 to −50‰. Isotopic ratios in methane emitted by tropical fires depended on the C3 : C4 ratio of the biomass fuel. In smoke from tropical C3 dry forest fires in Senegal, δ13CCH4 values were around −28‰. By contrast, African C4 tropical grass fire δ13CCH4 values were −16 to −12‰. Methane from urban landfills in Zambia and Zimbabwe, which have frequent waste fires, had δ13CCH4 around −37 to −36‰. These new isotopic values help improve isotopic constraints on global methane budget models because atmospheric δ13CCH4 values predicted by global atmospheric models are highly sensitive to the δ13CCH4 isotopic signatures applied to tropical wetland emissions. Field and aircraft campaigns also observed widespread regional smoke pollution over Africa, in both the wet and dry seasons, and large urban pollution plumes. The work highlights the need to understand tropical greenhouse gas emissions in order to meet the goals of the UNFCCC Paris Agreement, and to help reduce air pollution over wide regions of Africa
The polarized image of a synchrotron-emitting ring of gas orbiting a black hole
High Energy Astrophysic
Constraints on black-hole charges with the 2017 EHT observations of M87*
InstrumentationHigh Energy Astrophysic
The variability of the black hole image in M87 at the dynamical timescale
The black hole images obtained with the Event Horizon Telescope (EHT) are expected to be variable at the dynamical timescale near their horizons. For the black hole at the center of the M87 galaxy, this timescale (5–61 days) is comparable to the 6 day extent of the 2017 EHT observations. Closure phases along baseline triangles are robust interferometric observables that are sensitive to the expected structural changes of the images but are free of station-based atmospheric and instrumental errors. We explored the day-to-day variability in closure-phase measurements on all six linearly independent nontrivial baseline triangles that can be formed from the 2017 observations. We showed that three triangles exhibit very low day-to-day variability, with a dispersion of ∼3°–5°. The only triangles that exhibit substantially higher variability (∼90°–180°) are the ones with baselines that cross the visibility amplitude minima on the u–v plane, as expected from theoretical modeling. We used two sets of general relativistic magnetohydrodynamic simulations to explore the dependence of the predicted variability on various black hole and accretion-flow parameters. We found that changing the magnetic field configuration, electron temperature model, or black hole spin has a marginal effect on the model consistency with the observed level of variability. On the other hand, the most discriminating image characteristic of models is the fractional width of the bright ring of emission. Models that best reproduce the observed small level of variability are characterized by thin ring-like images with structures dominated by gravitational lensing effects and thus least affected by turbulence in the accreting plasmas.https://iopscience.iop.org/article/10.3847/1538-4357/ac332e/pdfPublished versio
Event Horizon Telescope observations of the jet launching and collimation in Centaurus A
InstrumentationLarge scale structure and cosmolog
- …