42 research outputs found

    Structure, Function, and Applications of Soybean Calcium Transporters

    No full text
    Glycine max is a calcium-loving crop. The external application of calcium fertilizer is beneficial to the increase of soybean yield. Indeed, calcium is a vital nutrient in plant growth and development. As a core metal ion in signaling transduction, calcium content is maintained in dynamic balance under normal circumstances. Now, eight transporters were found to control the uptake and efflux of calcium. Though these calcium transporters have been identified through genome-wide analysis, only a few of them were functionally verified. Therefore, in this study, we summarized the current knowledge of soybean calcium transporters in structural features, expression characteristics, roles in stress response, and prospects. The above results will be helpful in understanding the function of cellular calcium transport and provide a theoretical basis for elevating soybean yield

    Ectopic Expression of GsSRK in Medicago sativa Reveals Its Involvement in Plant Architecture and Salt Stress Responses

    No full text
    Receptor-like kinases (RLK) play fundamental roles in plant growth and stress responses. Compared with other RLKs, little information is provided concerning the S-locus LecRLK subfamily, which is characterized by an extracellular G-type lectin domain and an S-locus-glycop domain. Until now, the function of the G-type lectin domain is still unknown. In a previous research, we identified a Glycine soja S-locus LecRLK gene GsSRK, which conferred increased salt stress tolerance in transgenic Arabidopsis. In this study, to investigate the role of the G-type lectin domain and to breed transgenic alfalfa with superior salt stress tolerance, we transformed the full-length GsSRK (GsSRK-f) and a truncated version of GsSRK (GsSRK-t) deleting the G-type lectin domain into alfalfa. Our results showed that overexpression of GsSRK-t, but not GsSRK-f, resulted in changes of plant architecture, as evidenced by more branches but shorter shoots of GsSRK-t transgenic alfalfa, indicating a potential role of the extracellular G-type lectin domain in regulating plant architecture. Furthermore, we also found that transgenic alfalfa overexpressing either GsSRK-f or GsSRK-t showed increased salt stress tolerance, and GsSRK-t transgenic alfalfa displayed better growth (more branches and higher fresh weight) than GsSRK-f lines under salt stress. In addition, our results suggested that both GsSRK-f and GsSRK-t were involved in ion homeostasis, ROS scavenging, and osmotic regulation. Under salt stress, the Na+ content in the transgenic lines was significantly lower, while the K+ content was slightly higher than that in WT. Moreover, the transgenic lines displayed reduced ion leakage and MDA content, but increased SOD activity and proline content than WT. Notably, no obvious difference in these physiological indices was observed between GsSRK-f and GsSRK-t transgenic lines, implying that deletion of the GsSRK G-type lectin domain does not affect its physiological function in salt stress responses. In conclusion, results in this research reveal the dual role of GsSRK in regulating both plant architecture and salt stress responses

    Genome-Wide Identification of the PHD-Finger Family Genes and Their Responses to Environmental Stresses in Oryza sativa L.

    No full text
    The PHD-finger family has been demonstrated to be involved in regulating plant growth and development. However, little information is given for its role in environmental stress responses. Here, we identified a total of 59 PHD family genes in the rice genome. These OsPHDs genes were located on eleven chromosomes and synteny analysis only revealed nine duplicated pairs within the rice PHD family. Phylogenetic analysis of all OsPHDs and PHDs from other species revealed that they could be grouped into two major clusters. Furthermore, OsPHDs were clustered into eight groups and members from different groups displayed a great divergence in terms of gene structure, functional domains and conserved motifs. We also found that with the exception of OsPHD6, all OsPHDs were expressed in at least one of the ten tested tissues and OsPHDs from certain groups were expressed in specific tissues. Moreover, our results also uncovered differential responses of OsPHDs expression to environmental stresses, including ABA (abscisic acid), water deficit, cold and high Cd. By using quantitative real-time PCR, we further confirmed the differential expression of OsPHDs under these stresses. OsPHD1/7/8/13/33 were differentially expressed under water deficit and Cd stresses, while OsPHD5/17 showed altered expression under water deficit and cold stresses. Moreover, OsPHD3/44/28 displayed differential expression under ABA and Cd stresses. In conclusion, our results provide valuable information on the rice PHD family in plant responses to environmental stress, which will be helpful for further characterizing their biological roles in responding to environmental stresses

    Fluorescence detection of 2,4-dichlorophenoxyacetic acid by ratiometric fluorescence imaging on paper-based microfluidic chips

    No full text
    Fluorescence detection of pesticide contamination enables timely control of food safety. This study aims to construct novel and facile microfluidic paper-based analytical devices for the ratiometric fluorescence determination of pesticides. Through fluorescence resonance energy transfer (FRET) of nitrobenzoxadiazole (NBD) and CdTe quantum dots (QDs), the new microfluidic paper chips allowed the rapid and selective visual detection of 2,4-dichlorophenoxyacetic acid (2,4-D). The performance changes of the fluorescent material on solid matrix material were studied in detail. The sensor products exhibited visual observability and fluorescence characteristics. Under optimized conditions, the sensors showed satisfactory linearity in the range of 0.56-80 mu M, and achieved detection limits as low as 90 nM. The sensors were successfully applied for soybean sprouts and lake water samples. Four levels of spiked-in 2,4-D concentrations were obtained with high recovery rates ranging from 86.2% to 109.5% and the RSD less than 4.19%. Thus, the present work described the integration of surface imprinted grafts on cellulose paper and ratiometric fluorescence techniques for highly sensitive separation and detection of pesticides in real food and environmental samples. Ultimately, this study paved the way for the development of novel ratiometric fluorescence detection to address food safety and environmental issues

    Dose-Dependent Beneficial Effects of Tryptophan and Its Derived Metabolites on Akkermansia In Vitro: A Preliminary Prospective Study

    No full text
    Akkermansia muciniphila, a potential probiotic, has been proven to lessen the effects of several diseases. As established, the relative abundance of Akkermansia is positively correlated with tryptophan metabolism. However, the reciprocal interaction between tryptophan and Akkemansia is still unclear. Herein, for the first time, the possible effects of tryptophan and its derived metabolites on A. muciniphila were preliminarily investigated, including growth, physiological function, and metabolism. Obtained results suggested that 0.4 g/L of tryptophan treatment could significantly promote the growth of A. muciniphila. Notably, when grown in BHI with 0.8 g/L of tryptophan, the hydrophobicity and adhesion of A. muciniphila were significantly improved, potentially due to the increase in the rate of cell division. Furthermore, A. muciniphila metabolized tryptophan to indole, indole-3-acetic acid, indole-3-carboxaldehyde, and indole-3-lactic acid. Indoles produced by gut microbiota could significantly promote the growth of A. muciniphila. These results could provide a valuable reference for future research on the relationship between tryptophan metabolism and A. muciniphila

    An Empirical Study on GAN-Based Traffic Congestion Attack Analysis: A Visualized Method

    No full text
    With the development of emerging intelligent traffic signal (I-SIG) system, congestion-involved security issues are drawing attentions of researchers and developers on the vulnerability introduced by connected vehicle technology, which empowers vehicles to communicate with the surrounding environment such as road-side infrastructure and traffic control units. A congestion attack to the controlled optimization of phases algorithm (COP) of I-SIG is recently revealed. Unfortunately, such analysis still lacks a timely visualized prediction on later congestion when launching an initial attack. In this paper, we argue that traffic image feature-based learning has available knowledge to reflect the relation between attack and caused congestion and propose a novel analysis framework based on cycle generative adversarial network (CycleGAN). Based on phase order, we first extract four-direction road images of one intersection and perform phase-based composition for generating new sample image of training. We then design a weighted L1 regularization loss that considers both last-vehicle attack and first-vehicle attack, to improve the training of CycleGAN with two generators and two discriminators. Experiments on simulated traffic flow data from VISSIM platform show the effectiveness of our approach

    A Glycine soja group S2 bZIP transcription factor GsbZIP67 conferred bicarbonate alkaline tolerance in Medicago sativa

    No full text
    Abstract Background Even though bicarbonate alkaline stress is a serious threat to crop growth and yields, it attracts much fewer researches than high salinity stress. The basic leucine zipper (bZIP) transcription factors have been well demonstrated to function in diverse abiotic stresses; however, their biological role in alkaline tolerance still remains elusive. In this study, we functionally characterized a bZIP gene from Glycine soja GsbZIP67 in bicarbonate alkaline stress responses. Results GsbZIP67 was initially identified as a putative bicarbonate responsive gene, on the basis of previous RNA-seq data of 50 mM NaHCO3-treated Glycine soja roots. GsbZIP67 protein possessed a conserved bZIP domain, and belonged to the group S2 bZIP, which is yet less well-studied. Our studies showed that GsbZIP67 targeted to nucleus in Arabidopsis protoplasts, and displayed transcriptional activation activity in yeast cells. The quantitative real-time PCR analyses unraveled the bicarbonate stress responsive expression and tissue specific expression of GsbZIP67 in wild soybean. Further phenotypic analysis illustrated that GsbZIP67 overexpression in alfalfa promoted plant growth under bicarbonate alkaline stress, as evidenced by longer roots and shoots. Furthermore, GsbZIP67 overexpression also modified the physiological indices of transgenic alfalfa under bicarbonate alkaline stress. In addition, the expression levels of several stress responsive genes were also augmented by GsbZIP67 overexpression. Conclusions Collectively, in this study, we demonstrated that GsbZIP67 acted as a positive regulator of plant tolerance to bicarbonate alkaline stress. These results provide direct genetic evidence of group S2 bZIPs in bicarbonate alkaline stress, and will facilitate further studies concerning the cis-elements and/or downstream genes targeted by GsbZIP67 in stress responses
    corecore