5,133 research outputs found
Comment on 4D Lorentz invariance violations in the brane-world
The brane-world scenario offers the possibility for signals to travel outside
our visible universe and reenter it. We find the condition for a signal emitted
from the brane to return to the brane. We study the propagation of such signals
and show that, as seen by a 4D observer, these signals arrive earlier than
light traveling along the brane. We also study the horizon problem and find
that, while the bulk signals can travel far enough to homogenize the visible
universe, it is unlikely that they have a significant effect since they are
redshifted in the gravitational field of the bulk black hole.Comment: 21 pages, 6 figures, REVTEX, New section adde
Brane Cosmology Solutions with Bulk Scalar Fields
Brane cosmologies with static, five-dimensional and Z_2 symmetric bulks are
analysed. A general solution generating mechanism is outlined. The qualatitive
cosmological behaviour of all such solutions is determined. Conditions for
avoiding naked bulk singularities are also discussed. The restrictions placed
on the solutions by the assumption of such a static bulk are investigated. In
particular the requirement of a non-standard energy-momentum conservation law.
The failure of such solutions to provide viable quintessence terms in the
Friedmann equations is also discussed.Comment: 15 pages, references added, minor change
The Operator Product Expansion of the Lowest Higher Spin Current at Finite N
For the N=2 Kazama-Suzuki(KS) model on CP^3, the lowest higher spin current
with spins (2, 5/2, 5/2,3) is obtained from the generalized GKO coset
construction. By computing the operator product expansion of this current and
itself, the next higher spin current with spins (3, 7/2, 7/2, 4) is also
derived. This is a realization of the N=2 W_{N+1} algebra with N=3 in the
supersymmetric WZW model. By incorporating the self-coupling constant of lowest
higher spin current which is known for the general (N,k), we present the
complete nonlinear operator product expansion of the lowest higher spin current
with spins (2, 5/2, 5/2, 3) in the N=2 KS model on CP^N space. This should
coincide with the asymptotic symmetry of the higher spin AdS_3 supergravity at
the quantum level. The large (N,k) 't Hooft limit and the corresponding
classical nonlinear algebra are also discussed.Comment: 62 pages; the footnotes added, some redundant appendices removed, the
presentations in the whole paper improved and to appear in JHE
Equivalences between spin models induced by defects
The spectrum of integrable spin chains are shown to be independent of the
ordering of their spins. As an application we introduce defects (local spin
inhomogeneities in homogenous chains) in two-boundary spin systems and, by
changing their locations, we show the spectral equivalence of different
boundary conditions. In particular we relate certain nondiagonal boundary
conditions to diagonal ones.Comment: 14 pages, 16 figures, LaTeX, Extended versio
String-inspired cosmology
I discuss cosmological models either derived from, or inspired by, string
theory or M-theory. In particular I discuss solutions in the low-energy
effective theory and the role of the dilaton, moduli and antisymmetric form
fields in the dimensionally reduced effective action. The pre big bang model is
an attempt to use cosmological solutions to make observational predictions. I
then discuss the effective theory of gravity found in recent brane-world models
where we live on a 3-brane embedded in a five-dimensional spacetime and how the
study of cosmological perturbations may enable us to test these ideas.Comment: 15 pages, 5 figures, latex with iopart, invited talk at `The Early
Universe and Cosmological Observations: a Critical Review', Cape Town, July
200
No-Go Theorem for Horizon-Shielded Self-Tuning Singularities
We derive a simple no-go theorem relating to self-tuning solutions to the
cosmological constant for observers on a brane, which rely on a singularity in
an extra dimension. The theorem shows that it is impossible to shield the
singularity from the brane by a horizon, unless the positive energy condition
(rho+p >= 0) is violated in the bulk or on the brane. The result holds
regardless of the kinds of fields which are introduced in the bulk or on the
brane, whether Z_2 symmetry is imposed at the brane, or whether higher
derivative terms of the Gauss-Bonnet form are added to the gravitational part
of the action. However, the no-go theorem can be evaded if the three-brane has
spatial curvature. We discuss explicit realizations of such solutions which
have both self-tuning and a horizon shielding the singularity.Comment: 7 pages, 4 figures, revtex; added reference and minor correction
Sculpting the Extra Dimensions: Inflation from Codimension-2 Brane Back-reaction
We construct an inflationary model in 6D supergravity that is based on
explicit time-dependent solutions to the full higher-dimensional field
equations, back-reacting to the presence of a 4D inflaton rolling on a
space-filling codimension-2 source brane. Fluxes in the bulk stabilize all
moduli except the `breathing' modulus (that is generically present in
higher-dimensional supergravities). Back-reaction to the inflaton roll causes
the 4D Einstein-frame on-brane geometry to expand, a(t) ~ t^p, as well as
exciting the breathing mode and causing the two off-brane dimensions to expand,
r(t) ~ t^q. The model evades the general no-go theorems precluding 4D de Sitter
solutions, since adjustments to the brane-localized inflaton potential allow
the power p to be dialed to be arbitrarily large, with the 4D geometry becoming
de Sitter in the limit p -> infinity (in which case q = 0). Slow-roll solutions
give accelerated expansion with p large but finite, and q = 1/2. Because the
extra dimensions expand during inflation, the present-day 6D gravity scale can
be much smaller than it was when primordial fluctuations were generated -
potentially allowing TeV gravity now to be consistent with the much higher
gravity scale required at horizon-exit for observable primordial gravity waves.
Because p >> q, the 4 on-brane dimensions expand more quickly than the 2
off-brane ones, providing a framework for understanding why the observed four
dimensions are presently so much larger than the internal two. If uplifted to a
10D framework with 4 dimensions stabilized, the 6D evolution described here
could describe how two of the six extra dimensions evolve to become much larger
than the others, as a consequence of the enormous expansion of the 4 large
dimensions we can see.Comment: 27 pages + appendices, 2 figure
Exact Solutions in Five-Dimensional Axi-dilaton Gravity with Euler-Poincare Term
We examine the effective field equations that are obtained from the
axi-dilaton gravity action with a second order Euler-Poincare term and a
cosmological constant in all higher dimensions. We solve these equations for
five-dimensional spacetimes possessing homogeneity and isotropy in their
three-dimensional subspaces. For a number of interesting special cases we show
that the solutions fall into two main classes: The first class consists of
time-dependent solutions with spherical or hyperboloidal symmetry which require
certain fine-tuning relations between the coupling constants of the model and
the cosmological constant. Solutions in the second class are locally static and
prove the validity of Birkhoff's staticity theorem in the axi-dilaton gravity.
We also give a special class of static solutions, among them the well-known
black hole solutions in which the usual electric charge is superseded by an
axion charge.Comment: New formulas and references adde
Lorentz-violation and cosmological perturbations: a toy brane-world model
We study possible effects of Lorentz-violation on the generation of
cosmological perturbations at inflation by introducing a simple inflating
five-dimensional brane-world setup with violation of four-dimensional
Lorentz-invariance at an energy scale . We consider massless scalar field,
meant to mimic perturbations of inflaton and/or gravitational field, in this
background. At three-momenta below , there exists a zero mode localized on
the brane, whose behaviour coincides with that in four-dimensional theory. On
the contrary, at three-momenta above , the localized mode is absent and
physics is entirely five-dimensional. As three-momenta get redshifted, more
modes get localized on the brane, the phenomenon analogous to ``mode
generation''. We find that for , where is the inflationary Hubble
scale, the spectrum of perturbations coincides with that in four-dimensional
theory. For and time-dependent bulk parameters, the spectrum deviates,
possibly strongly, from the flat spectrum even for pure de Sitter inflation.Comment: 5 figures, iopart, minor changes, appendix adde
The quantum non-linear Schrodinger model with point-like defect
We establish a family of point-like impurities which preserve the quantum
integrability of the non-linear Schrodinger model in 1+1 space-time dimensions.
We briefly describe the construction of the exact second quantized solution of
this model in terms of an appropriate reflection-transmission algebra. The
basic physical properties of the solution, including the space-time symmetry of
the bulk scattering matrix, are also discussed.Comment: Comments on the integrability and the impurity free limit adde
- …