299 research outputs found
Students as co-creators of teaching approaches, course design and curricula: implications for academic developers
Within higher education, studentsâ voices are frequently overlooked in the design of teaching approaches, courses and curricula. In this paper we outline the theoretical background to arguments for including students as partners in pedagogical planning processes. We present examples where students have worked collaboratively in design processes along with the beneficial outcomes of these examples. Finally we focus on some of the implications and opportunities for academic developers of proposing collaborative approaches to pedagogical planning
Student participation in the design of learning and teaching: Disentangling the terminology and approaches
Background: Students are ever more involved in the design of educational practices, which is reflected in the growing body of literature about approaches to student participation. Similarities and differences between these approaches often remain vague since the terms are used interchangeably. This confusing and fragmented body of literature hampers our understanding the process and outcomes of student participation and choosing the most suitable approach for it. Method: We identified the three most frequently used terms related to the design of learning and teachingâdesign-based research (DBR), participatory design (PD), and co-creationâand disentangled the terminology by focusing on relevant definitions, aims, involvement of students, outcomes, and related terminology. Results: Differences between the approaches to student participation can be found in the degree to which students are the central actors and the degree to which the design is informed by educational theory. Conclusion: It is important to align the level of student participation with the purpose of the approach
Band energy control of molybdenum oxide by surface hydration
EPSRC (Grants EP/M009580/1, EP/J017361/1, EP/I01330X/1, and EP/I028641/1), the Royal Society, and the European Research Council. The work benefited from the University of Bath's High Performance Computing Facility, and access to the HECToR supercomputer through membership of the UKs HPC Materials Chemistry Consortium, which is funded by EPSRC (Grant No. EP/F067496) and the UltraFOx grant
Towards a Theoretical Framework for Understanding the Development of Media Related Needs
The question of why people select and prefer particular media activities has led to the development of a number of âneedsâ approaches to media use. Whilst some frameworks have been developed within the context of media use (e.g. uses and gratifications), others (e.g. Tamborini et al, 2011) look to combine general theories of basic human needs, such as Self-Determination Theory (Deci &Ryan, 1985) with hedonic gratifications. Drawing on these approaches, a framework is proposed that maps findings from childrenâs and adolescentsâ media use to four basic human needs: competence, autonomy, relatedness and hedonic needs. The current paper argues that a basic needs approach is useful for understanding how media-related needs emerge and are expressed through development
Dark Matter Subhalos in the Ursa Minor Dwarf Galaxy
Through numerical simulations, we study the dissolution timescale of the Ursa
Minor cold stellar clump, due to the combination of phase-mixing and
gravitational encounters with compact dark substructures in the halo of Ursa
Minor. We compare two scenarios; one where the dark halo is made up by a smooth
mass distribution of light particles and one where the halo contains 10% of its
mass in the form of substructures (subhalos). In a smooth halo, the stellar
clump survives for a Hubble time provided that the dark matter halo has a big
core. In contrast, when the point-mass dark substructures are added, the clump
survives barely for \sim 1.5 Gyr. These results suggest a strong test to the
\Lambda-cold dark matter scenario at dwarf galaxy scale.Comment: accepted for publication in Ap
The Least Luminous Galaxy: Spectroscopy of the Milky Way Satellite Segue 1
We present Keck/DEIMOS spectroscopy of Segue 1, an ultra-low luminosity (M_V
= -1.5) Milky Way satellite companion. While the combined size and luminosity
of Segue 1 are consistent with either a globular cluster or a dwarf galaxy, we
present spectroscopic evidence that this object is a dark matter-dominated
dwarf galaxy. We identify 24 stars as members of Segue 1 with a mean
heliocentric recession velocity of 206 +/- 1.3 kms. We measure an internal
velocity dispersion of 4.3+/-1.2 kms. Under the assumption that these stars are
in dynamical equilibrium, we infer a total mass of 4.5^{+4.7}_{-2.5} x 10^5
Msun in the case where mass-follow-light; using a two-component maximum
likelihood model, we determine a similar mass within the stellar radius of 50
pc. This implies a mass-to-light ratio of ln(M/L_V) = 7.2^{+1.1}_{-1.2} or
M/L_V = 1320^{+2680}_{-940}. The error distribution of the mass-to-light ratio
is nearly log-normal, thus Segue 1 is dark matter-dominated at a high
significance. Using spectral synthesis modeling, we derive a metallicity for
the single red giant branch star in our sample of [Fe/H]=-3.3 +/- 0.2 dex.
Finally, we discuss the prospects for detecting gamma-rays from annihilation of
dark matter particles and show that Segue 1 is the most promising satellite for
indirect dark matter detection. We conclude that Segue 1 is the least luminous
of the ultra-faint galaxies recently discovered around the Milky Way, and is
thus the least luminous known galaxy.Comment: 12 pages, 6 figures, ApJ accepte
- âŠ