505 research outputs found

    Agonistic and antagonistic estrogens in licorice root (Glycyrrhiza glabra)

    Get PDF
    The roots of licorice (Glycyrrhiza glabra) are a rich source of flavonoids, in particular, prenylated flavonoids, such as the isoflavan glabridin and the isoflavene glabrene. Fractionation of an ethyl acetate extract from licorice root by centrifugal partitioning chromatography yielded 51 fractions, which were characterized by liquid chromatography–mass spectrometry and screened for activity in yeast estrogen bioassays. One third of the fractions displayed estrogenic activity towards either one or both estrogen receptors (ERs; ERa and ERß). Glabrene-rich fractions displayed an estrogenic response, predominantly to the ERa. Surprisingly, glabridin did not exert agonistic activity to both ER subtypes. Several fractions displayed higher responses than the maximum response obtained with the reference compound, the natural hormone 17ß-estradiol (E2). The estrogenic activities of all fractions, including this so-called superinduction, were clearly ER-mediated, as the estrogenic response was inhibited by 20–60% by known ER antagonists, and no activity was found in yeast cells that did not express the ERa or ERß subtype. Prolonged exposure of the yeast to the estrogenic fractions that showed superinduction did, contrary to E2, not result in a decrease of the fluorescent response. Therefore, the superinduction was most likely the result of stabilization of the ER, yeast-enhanced green fluorescent protein, or a combination of both. Most fractions displaying superinduction were rich in flavonoids with single prenylation. Glabridin displayed ERa-selective antagonism, similar to the ERa-selective antagonist RU 58668. Whereas glabridin was able to reduce the estrogenic response of E2 by approximately 80% at 6¿×¿10-6 M, glabrene-rich fractions only exhibited agonistic responses, preferentially on ERa

    Left to Their Own Devices:On Using iPads Within a Flipped Classroom Approach to Support Student Autonomy and Engagement in Compulsory EFL Classes

    Get PDF
    This study examines student engagement within the context of “flipped” English as a foreign language (EFL) classes that promoted active learning through the utilization of interactive iPad activities. These classes formed the core of a compulsory EFL program at a Japanese university. Despite increasing academic interest in both engagement and the flipped classroom, the two together have so far received little attention as a research topic in compulsory EFL contexts. The study begins with an examination of the ontological basis for the three engagement subtypes: behavioral, cognitive, and emotional. It is argued that the construct achieves greater theoretical coherence, in addition to value as a meaningful outcome in itself, by reconceptualizing emotional engagement as relational engagement. The empirical components of the study were conducted in four phases: (a) a quantitative comparison of engagement, autonomy-support, and outcome variables (n = 403), (b) an analysis of observed student behaviors (n = 54), (c) an interview-based investigation of student perceptions regarding engagement and autonomy (n = 21), and (d) an interview-based investigation of teacher perceptions regarding engagement and autonomy (n = 2). The quantitative data revealed that flipped classes resulted in higher engagement relative to conventional teacher-fronted classes, with engagement in technology enhanced flipped-iPad classes rising moderately over the course of a semester. The observational data indicated more instances of student-student interactions in the flipped-iPad classes versus the flipped-textbook classes. However, contrary to assumptions, the per-student and per-group analyses presented a diversity of behaviors and frequencies of occurrence. Student interviews revealed correspondingly diverse views, indicating engagement with and through technology in all of the relations posited by Ihde’s theory of technological mediation (embodied, hermeneutic, alterity, and background). Teacher interviews revealed how beliefs regarding both pedagogical goals and determinants of student success can influence perceptions of engagement and autonomy. The study concludes with a discussion of implications for theory and instruction

    Comparison of the diagnostic value of symmetric dimethylarginine, cystatin C, and creatinine for detection of decreased glomerular filtration rate in dogs

    Get PDF
    BACKGROUND: Early detection of decreased glomerular filtration rate (GFR) in dogs is challenging. Current methods are insensitive and new biomarkers are required. OBJECTIVE: To compare overall diagnostic performance of serum symmetric dimethylarginine (SDMA) and serum cystatin C to serum creatinine, for detection of decreased GFR in clinically stable dogs, with or without chronic kidney disease (CKD). ANIMALS: Ninety-seven client-owned dogs: 67 dogs with a diagnosis or suspicion of CKD and 30 healthy dogs were prospectively included. METHODS: Prospective diagnostic accuracy study. All dogs underwent physical examination, systemic arterial blood pressure measurement, urinalysis, hematology and blood biochemistry analysis, cardiac and urinary ultrasound examinations, and scintigraphy for estimation of glomerular filtration rate (mGFR). Frozen serum was used for batch analysis of SDMA and cystatin C. RESULTS: The area under the curve of creatinine, SDMA, and cystatin C for detection of an mGFR <30.8 mL/min/L was 0.98 (95% confidence interval [CI], 0.93-1.0), 0.96 (95% CI, 0.91-0.99), and 0.87 (95% CI, 0.79-0.93), respectively. The sensitivity of both creatinine and SDMA at their prespecified cutoffs (115 μmol/L [1.3 mg/dL] and 14 μg/dL) for detection of an abnormal mGFR was 90%. The specificity was 90% for creatinine and 87% for SDMA. When adjusting the cutoff for cystatin C to correspond to a diagnostic sensitivity of 90% (0.49 mg/L), specificity was lower (72%) than that of creatinine and SDMA. CONCLUSIONS AND CLINICAL IMPORTANCE: Overall diagnostic performance of creatinine and SDMA for detection of decreased mGFR was similar. Overall diagnostic performance of cystatin C was inferior to both creatinine and SDMA

    Recombinant cell bioassays for the detection of (gluco)corticosteroids and endocrine-disrupting potencies of several environmental PCB contaminants

    Get PDF
    Sensitive and robust bioassays for glucocorticoids are very useful for the pharmaceutical industry, environmental scientists and veterinary control. Here, a recombinant yeast cell was constructed that expresses the human glucocorticoid receptor alpha and a green fluorescent reporter protein in response to glucocorticoids. Both the receptor construct and the reporter construct were stably integrated into the yeast genome. The correct and specific functioning of this yeast glucocorticoid bioassay was studied by exposures to cortisol and other related compounds and critically compared to a GR-CALUX bioassay based on a human bone cell. Although less sensitive, the new yeast glucocorticoid bioassay showed sensitivity towards all (gluco)corticoids tested, with the following order in relative potencies: budesonide >> corticosterone > dexamethasone > cortisol = betamethasone > prednisolone > aldosterone. Hormone representatives for other hormone nuclear receptors, like 17β-estradiol for the oestrogen receptor, 5ι-dihydrotestosterone for the androgen receptor and progesterone for the progesterone receptor, showed no clear agonistic responses, whilst some polychlorinated biphenyls were clearly able to interfere with the GR activity

    Bovine liver slices combined with an androgen transcriptional activation assay: an in-vitro model to study the metabolism and bioactivity of steroids

    Get PDF
    Previously we described the properties of a rapid and robust yeast androgen bioassay for detection of androgenic anabolic compounds, validated it, and showed its added value for several practical applications. However, biotransformation of potent steroids into inactive metabolites, or vice versa, is not included in this screening assay. Within this context, animal-friendly in-vitro cellular systems resembling species-specific metabolism can be of value. We therefore investigated the metabolic capacity of precision-cut slices of bovine liver using 17β-testosterone (T) as a model compound, because this is an established standard compound for assessing the metabolic capacity of such cellular systems. However, this is the first time that slice metabolism has been combined with bioactivity measurements. Moreover, this study also involves bioactivation of inactive prohormones, for example dehydroepiandrosterone (DHEA) and esters of T, and although medium extracts are normally analyzed by HPLC, here the metabolites formed were identified with more certainty by ultra-performance liquid chromatography time-of-flight mass spectrometry (UPLC–TOFMS) with accurate mass measurement. Metabolism of T resulted mainly in the formation of the less potent phase I metabolites 4-androstene-3,17-dione (4-AD), the hydroxy-T metabolites 6α, 6β, 15β, and 16α-OH-T, and the phase II metabolite T-glucuronide. As a consequence the overall androgenic activity, as determined by the yeast androgen bioassay, decreased. In order to address the usefulness of bovine liver slices for activation of inactive steroids, liver slices were exposed to DHEA and two esters of T. This resulted in an increase of androgenic activity, because of the formation of 4-AD and T

    Effect of sodium bicarbonate supplementation on the renin-angiotensin system in patients with chronic kidney disease and acidosis:a randomized clinical trial

    Get PDF
    Background Acidosis-induced kidney injury is mediated by the intrarenal renin-angiotensin system, for which urinary renin is a potential marker. Therefore, we hypothesized that sodium bicarbonate supplementation reduces urinary renin excretion in patients with chronic kidney disease (CKD) and metabolic acidosis. Methods Patients with CKD stage G4 and plasma bicarbonate 15-24 mmol/l were randomized to receive sodium bicarbonate (3 x 1000 mg/day, similar to 0.5 mEq/kg), sodium chloride (2 x 1,00 mg/day), or no treatment for 4 weeks (n = 15/arm). The effects on urinary renin excretion (primary outcome), other plasma and urine parameters of the renin-angiotensin system, endothelin-1, and proteinuria were analyzed. Results Forty-five patients were included (62 +/- 15 years, eGFR 21 +/- 5 ml/min/1.73m(2), plasma bicarbonate 21.7 +/- 3.3 mmol/l). Sodium bicarbonate supplementation increased plasma bicarbonate (20.8 to 23.8 mmol/l) and reduced urinary ammonium excretion (15 to 8 mmol/day, both P <0.05). Furthermore, a trend towards lower plasma aldosterone (291 to 204 ng/L, P = 0.07) and potassium (5.1 to 4.8 mmol/l, P = 0.06) was observed in patients receiving sodium bicarbonate. Sodium bicarbonate did not significantly change the urinary excretion of renin, angiotensinogen, aldosterone, endothelin-1, albumin, or alpha 1-microglobulin. Sodium chloride supplementation reduced plasma renin (166 to 122 ng/L), and increased the urinary excretions of angiotensinogen, albumin, and alpha 1-microglobulin (all P <0.05). Conclusions Despite correction of acidosis and reduction in urinary ammonium excretion, sodium bicarbonate supplementation did not improve urinary markers of the renin-angiotensin system, endothelin-1, or proteinuria. Possible explanations include bicarbonate dose, short treatment time, or the inability of urinary renin to reflect intrarenal renin-angiotensin system activity

    A large geometric distortion in the first photointermediate of rhodopsin, determined by double-quantum solid-state NMR

    No full text
    Double-quantum magic-angle-spinning NMR experiments were performed on 11,12-C-13(2)-retinylidene-rhodopsin under illumination at low temperature, in order to characterize torsional angle changes at the C11-C12 photoisomerization site. The sample was illuminated in the NMR rotor at low temperature (similar to 120 K) in order to trap the primary photointermediate, bathorhodopsin. The NMR data are consistent with a strong torsional twist of the HCCH moiety at the isomerization site. Although the HCCH torsional twist was determined to be at least 40A degrees, it was not possible to quantify it more closely. The presence of a strong twist is in agreement with previous Raman observations. The energetic implications of this geometric distortion are discussed

    Proton gradient formation in early endosomes from proximal tubules

    Get PDF
    AbstractHeavy endosomes were isolated from proximal tubules using a combination of magnesium precipitation and wheat-germ agglutinin negative selection techniques. Two small GTPases (Rab4 and Rab5) known to be specifically present in early endosomes were identified in our preparations. Endosomal acidification was followed fluorimetrically using acridine orange. In presence of chloride ions and ATP, the formation of a proton gradient (ΔpH) was observed. This process is due to the activity of an electrogenic V-type ATPase present in the endosomal membrane since specific inhibitors bafilomycin and folimycin effectively prevented or eliminated endosomal acidification. In presence of chloride ions (Km = 30 mM) the formation of the proton gradient was optimal. Inhibitors of chloride channel activity such as DIDS and NPPB reduced acidification. The presence of sodium ions stimulated the dissipation of the proton gradient. This effect of sodium was abolished by amiloride derivative (MIA) but only when loaded into endosomes, indicating the presence of a physiologically oriented Na+/H+-exchanger in the endosomal membrane. Monensin restored the gradient dissipation. Thus three proteins (V-type ATPase, Cl−-channel, Na+/H+-exchanger) present in early endosomas isolated from proximal tubules may regulate the formation, maintenance and dissipation of the proton gradient
    • …
    corecore