159 research outputs found
An Analysis and New Methodology for Reverse Engineering of UML Behavioral
The emergence of Unified Modeling Language (UML) as a standard for modeling systems has encouraged the use of automated software tools that facilitate the development process from analysis through coding. Reverse Engineering has become a viable method to measure an existing system and reconstruct the necessary model from its original. The Reverse Engineering of behavioral models consists in extracting high-level models that help understand the behavior of existing software systems. In this paper we present an ongoing work on extracting UML diagrams from object-oriented programming languages. we propose an approach for the reverse engineering of UML behavior from the analysis of execution traces produced dynamically by an object-oriented application using formal and semi-formal techniques for modeling the dynamic behavior of a system. Our methods show that this approach can produce UML behavioral diagrams in reasonable time and suggest that these diagrams are helpful in understanding the behavior of the underlying application
Separate and overlapping mechanisms of statistical regularities and salience processing in the occipital cortex and dorsal attention network
Attention selects behaviorally relevant inputs for in-depth processing. Beside the role of traditional signals related to goal-directed and stimulus-driven control, a debate exists regarding the mechanisms governing the effect of statistical regularities on attentional selection, and how these are integrated with other control signals. Using a visuo-spatial search task under fMRI, we tested the joint effects of statistical regularities and stimulus-driven salience. We found that both types of signals modulated occipital activity in a spatially specific manner. Salience acted primarily by reducing the attention bias towards the target location when associated with irrelevant distractors, while statistical regularities reduced this attention bias when the target was presented at a low probability location, particularly at the lower levels of the visual hierarchy. In addition, we found that both statistical regularities and salience activated the dorsal frontoparietal network. Additional exploratory analyses of functional connectivity revealed that only statistical regularities modulated the inter-regional coupling between the posterior parietal cortex and the occipital cortex. These results show that statistical regularities and salience signals are both spatially represented at the occipital level, but that their integration into attentional processing priorities relies on dissociable brain mechanisms
Comparison of energy transfer between Terbium and Ytterbium ions in glass and glass ceramic: Application in photovoltaic
The structural and optical properties of thin layers based on 70%SiO 2 –30%HfO 2 doped with different concentra- tion of rare earth ions (terbium and ytterbium) have been studied with a view to integrating them in a photovoltaic cell as a spectral conversion layer in order to improve its efficiency, by using down-conversion process. These thin films were synthesized by using sol gel technique and deposited on the pure silica substrate by dip-coating method. The DC layer can be placed on the front side of a solar cell and can enhance the current by converting ultraviolet (UV) photons into a large number of visible photons. In present study two series of samples are compared, the first series corresponds to samples treated at 900 °C (glass- S) while the second series concerns samples treated at 1000 °C (glass-ceramic- SC). These series are based on 70SiO 2 –30HfO 2 activated by different molar concentrations of rare earths [Tb + Yb]/[Si + Hf] = 7%, 9%, 12%, 15%, 17%, 19% and 21%. Photoluminescence results of reference samples (without Yb 3 + ) showed an emission from 5 D 4 to 7 F J ( J = 3, 4, 5, 6) level characteristic transitions of Tb 3 + , with a maximum peak in the green centered at 543.5 nm cor- responding to the 5 D 4 →7 F 5 transition. For the co-doped samples a clear NIR PL emission around 980 nm was detected, due to the 2 F 5/2 →2 F 7/2 transition of Yb 3 + ions. From luminescence decay curves of Tb 3 + maximum emission peak ( 7 F 5 →5 D 4 transition at 543.5 nm) we have identified the energy transfer efficiency. The quantum efficiency increases by increasing the total [Tb + Yb] concentration. The most significant yield was achieved with [Tb + Yb] = 19%, the maximum quantum transfer efficiency obtained was 190% for glass-ceramic samples and 161% for glassy one
Thomas Decomposition of Algebraic and Differential Systems
In this paper we consider disjoint decomposition of algebraic and non-linear
partial differential systems of equations and inequations into so-called simple
subsystems. We exploit Thomas decomposition ideas and develop them into a new
algorithm. For algebraic systems simplicity means triangularity, squarefreeness
and non-vanishing initials. For differential systems the algorithm provides not
only algebraic simplicity but also involutivity. The algorithm has been
implemented in Maple
On the Regularity Property of Differential Polynomials Modulo Regular Differential Chains
International audienceThis paper provides an algorithm which computes the normal form of a rational differential fraction modulo a regular differential chain if, and only if, this normal form exists. A regularity test for polynomials modulo regular chains is revisited in the nondifferential setting and lifted to differential algebra. A new characterization of regular chains is provided
Generation and transmission of 85.4 Gb/s realtime 16QAM coherent optical OFDM signals over 400 km SSMF with preamble-less reception
This paper presents a real-time, coherent optical OFDM transmitter based on a field programmable gate array implementation. The transmitter uses 16QAM mapping and runs at 28 GSa/s achieving a data rate of 85.4 Gb/s on a single polarization. A cyclic prefix of 25% of the symbol duration is added enabling dispersion-tolerant transmission over up to 400 km of SSMF. This is the first transmission experiment performed with a real-time OFDM transmitter running at data rates higher than 40 Gb/s. A key aspect of the paper is the introduction of a novel method for OFDM symbol synchronization without relying on training symbols. Unlike conventional preamble-based synchronization methods which perform cross-correlations at regular time intervals and let the system run freely in between, the proposed method performs synchronization in a continuous manner ensuring correct symbol alignment at all times
- …