1,433 research outputs found
Expanded Search for z~10 Galaxies from HUDF09, ERS, and CANDELS Data: Evidence for Accelerated Evolution at z>8?
We search for z~10 galaxies over ~160 arcmin^2 of WFC3/IR data in the Chandra
Deep Field South, using the public HUDF09, ERS, and CANDELS surveys, that reach
to 5sigma depths ranging from 26.9 to 29.4 in H_160 AB mag. z>~9.5 galaxy
candidates are identified via J_125-H_160>1.2 colors and non-detections in any
band blueward of J_125. Spitzer IRAC photometry is key for separating the
genuine high-z candidates from intermediate redshift (z~2-4) galaxies with
evolved or heavily dust obscured stellar populations. After removing 16 sources
of intermediate brightness (H_160~24-26 mag) with strong IRAC detections, we
only find one plausible z~10 galaxy candidate in the whole data set, previously
reported in Bouwens et al. (2011). The newer data cover a 3x larger area and
provide much stronger constraints on the evolution of the UV luminosity
function (LF). If the evolution of the z~4-8 LFs is extrapolated to z~10, six
z~10 galaxies are expected in our data. The detection of only one source
suggests that the UV LF evolves at an accelerated rate before z~8. The
luminosity density is found to increase by more than an order of magnitude in
only 170 Myr from z~10 to z~8. This increase is >=4x larger than expected from
the lower redshift extrapolation of the UV LF. We are thus likely witnessing
the first rapid build-up of galaxies in the heart of cosmic reionization.
Future deep HST WFC3/IR data, reaching to well beyond 29 mag, can enable a more
robust quantification of the accelerated evolution around z~10.Comment: 13 pages, 11 figures, ApJ resubmitted after referee repor
All NIRspec needs is HST/WFC3 pre-imaging? The use of Milky Way Stars in WFC3 Imaging to Register NIRspec MSA Observations
The James Webb Space Telescope (JWST) will be an exquisite new near-infrared
observatory with imaging and multi-object spectroscopy through ESA's NIRspec
instrument with its unique Micro-Shutter Array (MSA), allowing for slits to be
positioned on astronomical targets by opening specific 0.002"-wide micro
shutter doors.
To ensure proper target acquisition, the on-sky position of the MSA needs to
be verified before spectroscopic observations start. An onboard centroiding
program registers the position of pre-identified guide stars in a Target
Acquisition (TA) image, a short pre-spectroscopy exposure without dispersion
(image mode) through the MSA with all shutters open.
The outstanding issue is the availability of Galactic stars in the right
luminosity range for TA relative to typical high redshift targets. We explore
this here using the stars and candidate galaxies identified in the
source extractor catalogs of Brightest of Reionizing Galaxies survey
(BoRG[z8]), a pure-parallel program with Hubble Space Telescope Wide-Field
Camera 3.
We find that (a) a single WFC3 field contains enough Galactic stars to
satisfy the NIRspec astrometry requirement (20 milli-arcseconds), provided its
and the NIRspec TA's are AB in WFC3 F125W, (b) a single WFC3
image can therefore serve as the pre-image if need be, (c) a WFC3 mosaic and
accompanying TA image satisfy the astrometry requirement at AB mag in
WFC3 F125W, (d) no specific Galactic latitude requires deeper TA imaging due to
a lack of Galactic stars, and (e) a depth of AB mag in WFC3 F125W is
needed if a guide star in the same MSA quadrant as a target is required.
We take the example of a BoRG identified candidate galaxy and
require a Galactic star within 20" of it. In this case, a depth of 25.5 AB in
F125W is required (with 97% confidence).Comment: 17 pages, 15 figures, to appear in the Journal of Astronomical
Instrumentatio
Very blue UV-continuum slopes of low luminosity z~7 galaxies from WFC3/IR: Evidence for extremely low metallicities?
We use the ultra-deep WFC3/IR data over the HUDF and the Early Release
Science WFC3/IR data over the CDF-South GOODS field to quantify the broadband
spectral properties of candidate star-forming galaxies at z~7. We determine the
UV-continuum slope beta in these galaxies, and compare the slopes with galaxies
at later times to measure the evolution in beta. For luminous L*(z=3) galaxies,
we measure a mean UV-continuum slope beta of -2.0+/-0.2, which is comparable to
the beta~-2 derived at similar luminosities at z~5-6. However, for the lower
luminosity 0.1L*(z=3) galaxies, we measure a mean beta of -3.0+/-0.2. This is
substantially bluer than is found for similar luminosity galaxies at z~4, just
800 Myr later, and even at z~5-6. In principle, the observed beta of -3.0 can
be matched by a very young, dust-free stellar population, but when nebular
emission is included the expected beta becomes >~-2.7. To produce these very
blue beta's (i.e., beta~-3), extremely low metallicities and mechanisms to
reduce the red nebular emission are likely required. For example, a large
escape fraction (i.e., f_{esc}>~0.3) could minimize the contribution from this
red nebular emission. If this is correct and the escape fraction in faint z~7
galaxies is >~0.3, it may help to explain how galaxies reionize the universe.Comment: 5 pages, 5 figures, accepted for publication in Astrophysical Journal
Letter
Understanding the Observed Evolution of the Galaxy Luminosity Function from z=6-10 in the Context of Hierarchical Structure Formation
Recent observations of the Lyman-break galaxy (LBG) luminosity function (LF)
from z~6-10 show a steep decline in abundance with increasing redshift.
However, the LF is a convolution of the mass function of dark matter halos
(HMF)--which also declines sharply over this redshift range--and the
galaxy-formation physics that maps halo mass to galaxy luminosity. We consider
the strong observed evolution in the LF from z~6-10 in this context and
determine whether it can be explained solely by the behavior of the HMF. From
z~6-8, we find a residual change in the physics of galaxy formation
corresponding to a ~0.5 dex increase in the average luminosity of a halo of
fixed mass. On the other hand, our analysis of recent LF measurements at z~10
shows that the paucity of detected galaxies is consistent with almost no change
in the average luminosity at fixed halo mass from z~8. The LF slope also
constrains the variation about this mean such that the luminosity of galaxies
hosted by halos of the same mass are all within about an order-of-magnitude of
each other. We show that these results are well-described by a simple model of
galaxy formation in which cold-flow accretion is balanced by star formation and
momentum-driven outflows. If galaxy formation proceeds in halos with masses
down to 10^8 Msun, then such a model predicts that LBGs at z~10 should be able
to maintain an ionized intergalactic medium as long as the ratio of the
clumping factor to the ionizing escape fraction is C/f_esc < 10.Comment: 15 pages, 2 figures; results unchanged; accepted by JCA
Constraints on z~10 Galaxies from the Deepest HST NICMOS Fields
We use all available fields with deep NICMOS imaging to search for J dropouts
(H<28) at z~10. Our primary data set for this search were the two J+H NICMOS
parallel fields taken with the ACS HUDF. The 5 sigma limiting mags were 28.6 in
J and 28.5 in H. Several shallower fields were also used: J+H NICMOS frames
available over the HDF North, the HDF South NICMOS parallel, and the ACS HUDF.
The primary selection criterion was (J-H)>1.8. 11 such sources were found in
all search fields using this criterion. 8 of these were clearly ruled out as
credible z~10 sources, either as a result of detections (>2 sigma) blueward of
J or their colors redward of the break (H-K~1.5). The nature of the 3 remaining
sources could not be determined from the data. The number appears consistent
with the expected contamination from low-z interlopers. Analysis of the stacked
images for the 3 candidates also suggests contamination. Regardless of their
true redshifts, the actual number of z~10 sources must be <=3. To assess the
significance of these results, two lower redshift samples (a z~3.8 B-dropout
and z~6 i-dropout sample) were projected to z~8-12 using a (1+z)^{-1} size
scaling. They were added to the image frames, and the selection repeated,
giving 15.6 and 4.8 J-dropouts, respectively. This suggests that to the limit
of this probe (0.3 L*) there has been evolution from z~3.8 and possibly from
z~6. This is consistent with the strong evolution already noted at z~6 and
z~7.5 relative to z~3-4. Even assuming that 3 sources from this probe are at
z~10, the rest-frame continuum UV (~1500 A) luminosity density at z~10
(integrated down to 0.3 L*) is just 0.19_{-0.09}^{+0.13}x that at z~3.8 (or
0.19_{-0.10}^{+0.15}x including cosmic variance). However, if none of our
sources is at z~10, this ratio has a 1 sigma upper limit of 0.07. (abridged)Comment: 13 pages, 3 figures, 2 tables, accepted for publication in the
Astrophysical Journal Letter
The Dearth of z~10 Galaxies in all HST Legacy Fields -- The Rapid Evolution of the Galaxy Population in the First 500 Myr
We present an analysis of all prime HST legacy fields spanning >800 arcmin^2
for the search of z~10 galaxy candidates and the study of their UV luminosity
function (LF). In particular, we present new z~10 candidates selected from the
full Hubble Frontier Field (HFF) dataset. Despite the addition of these new
fields, we find a low abundance of z~10 candidates with only 9 reliable sources
identified in all prime HST datasets that include the HUDF09/12, the HUDF/XDF,
all the CANDELS fields, and now the HFF survey. Based on this comprehensive
search, we find that the UV luminosity function decreases by one order of
magnitude from z~8 to z~10 at all luminosities over a four magnitude range.
This also implies a decrease of the cosmic star-formation rate density by an
order of magnitude within 170 Myr from z~8 to z~10. We show that this
accelerated evolution compared to lower redshift can entirely be explained by
the fast build-up of the dark matter halo mass function at z>8. Consequently,
the predicted UV LFs from several models of galaxy formation are in good
agreement with this observed trend, even though the measured UV LF lies at the
low end of model predictions. In particular, the number of only 9 observed
candidate galaxies is lower, by ~50%, than predicted by galaxy evolution
models. The difference is generally still consistent within the Poisson and
cosmic variance uncertainties. However, essentially all models predict larger
numbers than observed. We discuss the implications of these results in light of
the upcoming James Webb Space Telescope mission, which is poised to find much
larger samples of z~10 galaxies as well as their progenitors at less than 400
Myr after the Big Bang.Comment: 13 pages, 6 figures, minor updates to match accepted versio
UV Luminosity Functions from 132 z~7 and z~8 Lyman-Break Galaxies in the ultra-deep HUDF09 and wide-area ERS WFC3/IR Observations
We identify 73 z~7 and 59 z~8 candidate galaxies in the reionization epoch,
and use this large 26-29.4 AB mag sample of galaxies to derive very deep
luminosity functions to <-18 AB mag and the star formation rate density at z~7
and z~8. The galaxy sample is derived using a sophisticated Lyman-Break
technique on the full two-year WFC3/IR and ACS data available over the HUDF09
(~29.4 AB mag, 5 sigma), two nearby HUDF09 fields (~29 AB mag, 14 arcmin) and
the wider area ERS (~27.5 AB mag) ~40 arcmin**2). The application of strict
optical non-detection criteria ensures the contamination fraction is kept low
(just ~7% in the HUDF). This very low value includes a full assessment of the
contamination from lower redshift sources, photometric scatter, AGN, spurious
sources, low mass stars, and transients (e.g., SNe). From careful modelling of
the selection volumes for each of our search fields we derive luminosity
functions for galaxies at z~7 and z~8 to <-18 AB mag. The faint-end slopes
alpha at z~7 and z~8 are uncertain but very steep at alpha = -2.01+/-0.21 and
alpha=-1.91+/-0.32, respectively. Such steep slopes contrast to the local
alpha<~-1.4 and may even be steeper than that at z~4 where alpha=-1.73+/-0.05.
With such steep slopes (alpha<~-1.7) lower luminosity galaxies dominate the
galaxy luminosity density during the epoch of reionization. The star formation
rate densities derived from these new z~7 and z~8 luminosity functions are
consistent with the trends found at later times (lower redshifts). We find
reasonable consistency, with the SFR densities implied from reported stellar
mass densities, being only ~40% higher at z<7. This suggests that (1) the
stellar mass densities inferred from the Spitzer IRAC photometry are reasonably
accurate and (2) that the IMF at very high redshift may not be very different
from that at later times.Comment: 38 pages, 21 figures, 20 tables, ApJ, accepted for publicatio
A candidate redshift z ~ 10 galaxy and rapid changes in that population at an age of 500 Myr
Searches for very-high-redshift galaxies over the past decade have yielded a
large sample of more than 6,000 galaxies existing just 900-2,000 million years
(Myr) after the Big Bang (redshifts 6 > z > 3; ref. 1). The Hubble Ultra Deep
Field (HUDF09) data have yielded the first reliable detections of z ~ 8
galaxies that, together with reports of a gamma-ray burst at z ~ 8.2 (refs 10,
11), constitute the earliest objects reliably reported to date. Observations of
z ~ 7-8 galaxies suggest substantial star formation at z > 9-10. Here we use
the full two-year HUDF09 data to conduct an ultra-deep search for z ~ 10
galaxies in the heart of the reionization epoch, only 500 Myr after the Big
Bang. Not only do we find one possible z ~ 10 galaxy candidate, but we show
that, regardless of source detections, the star formation rate density is much
smaller (~10%) at this time than it is just ~200 Myr later at z ~ 8. This
demonstrates how rapid galaxy build-up was at z ~ 10, as galaxies increased in
both luminosity density and volume density from z ~ 8 to z ~ 10. The 100-200
Myr before z ~ 10 is clearly a crucial phase in the assembly of the earliest
galaxies.Comment: 41 pages, 14 figures, 2 tables, Nature, in pres
- …