82 research outputs found

    Histoire de mots

    Get PDF
    Pervers, malheureux ou dĂ©ficients, Ă  corriger, Ă  rĂ©gĂ©nĂ©rer ou Ă  rĂ©adapter sous la fĂ©rule de surveillants ou grĂące aux soins Ă©clairĂ©s d’éducateurs et de psychologues, les mineurs de justice suscitent Ă  la fois crainte et compassion. Ces reprĂ©sentations contradictoires persistent tout au long d’un siĂšcle et demi et plus d’histoire, provoquant un dĂ©bat sans cesse renouvelĂ©, jusqu’à aujourd’hui, sur les parts respectives de la rĂ©pression (et de la pĂ©nitence) ou de l’éducation (et de la cure mĂ©dic..

    Severe Leptospirosis with Multiple Organ Failure Successfully Treated by Plasma Exchange and High-Volume Hemofiltration

    Get PDF
    Background. Leptospirosis is a spirochetal zoonosis with complex clinical features including renal and liver failure. Case report. We report the case of a Swiss fisherman presenting with leptospirosis. After initial improvement, refractory septic shock and severe liver and kidney failure developed. The expected mortality was estimated at 90% with clinical scores. The patient underwent plasma exchanges and high-volume hemofiltration (HVHF) with complete recovery of hepatic and kidney functions. Discussion. Plasma exchanges and HVHF may confer survival benefit on patients with severe leptospirosis, refractory septic shock, and multiple-organ failure

    A new method of probing mechanical losses of coatings at cryogenic temperatures

    Full text link
    A new method of probing mechanical losses and comparing the corresponding deposition processes of metallic and dielectric coatings in 1-100 MHz frequency range and cryogenic temperatures is presented. The method is based on the use of extremely high-quality quartz acoustic cavities whose internal losses are orders of magnitude lower than any available coatings nowadays. The approach is demonstrated for Chromium, Chromium/Gold and a multilayer tantala/silica coatings. The Ta2O5/SiO2{\rm Ta}_2{\rm O}_5/{\rm Si}{\rm O}_2 coating has been found to exhibit a loss angle lower than 1.6×10−51.6\times10^{-5} near 30 {\rm MHz} at 4 {\rm K}. The results are compared to the previous measurements

    Quantitative pulsatility measurements using 3D dynamic ultrasound localization microscopy

    Get PDF
    ABSTRACT: A rise in blood flow velocity variations (i.e. pulsatility) in the brain, caused by the stiffening of upstream arteries, is associated with cognitive impairment and neurodegenerative diseases. The study of this phenomenon requires brain-wide pulsatility measurements, with large penetration depth and high spatiotemporal resolution. The development of dynamic ultrasound localization microscopy (DULM), based on ULM, has enabled pulsatility measurements in the rodent brain in 2D. However, 2D imaging accesses only one slice of the brain and measures only 2D-projected and hence biased velocities . Herein, we present 3D DULM: using a single ultrasound scanner at high frame rate (1000–2000 Hz), this method can produce dynamic maps of microbubbles flowing in the bloodstream and extract quantitative pulsatility measurements in the cat brain with craniotomy and in the mouse brain through the skull, showing a wide range of flow hemodynamics in both large and small vessels. We highlighted a decrease in pulsatility along the vascular tree in the cat brain, which could be mapped with ultrasound down to a few tens of micrometers for the first time. We also performed an intra-animal validation of the method by showing consistent measurements between the two sides of the Willis circle in the mouse brain. Our study provides the first step towards a new biomarker that would allow the detection of dynamic abnormalities in microvessels in the brain, which could be linked to early signs of neurodegenerative diseases

    Homogeneous selection promotes microdiversity in the glacier-fed stream microbiome

    Get PDF
    Microdiversity, the organization of microorganisms into groups with closely related but ecologically different sub-types, is widespread and represents an important linchpin between microbial ecology and evolution. However, the drivers of microdiversification remain largely unknown. Here we show that selection promotes microdiversity in the microbiome associated with sediments in glacier-fed streams (GFS). Applying a novel phylogenetic framework, we identify several clades that are under homogeneous selection and that contain genera with higher levels of microdiversity than the rest of the genera. Overall these clades constituted ∌44% and ∌64% of community α-diversity and abundance, and both percentages increased further in GFS that were largely devoid of primary producers. Our findings show that strong homogeneous selection drives the microdiversification of specialized microbial groups putatively underlying their success in the extreme environment of GFS. This microdiversity could be threatened as glaciers shrink, with unknown consequences for microbial diversity and functionality in these ecosystems

    Hook length of the bacterial flagellum is optimized for maximal stability of the flagellar bundle

    Get PDF
    Most bacteria swim in liquid environments by rotating one or several flagella. The long external filament of the flagellum is connected to a membrane-embedded basal body by a flexible universal joint, the hook, which allows the transmission of motor torque to the filament. The length of the hook is controlled on a nanometer scale by a sophisticated molecular ruler mechanism. However, why its length is stringently controlled has remained elusive. We engineered and studied a diverse set of hook- length variants of Salmonella enterica. Measurements of plate-assay motility, single- cell swimming speed, and directional persistence in quasi-2D and population- averaged swimming speed and body angular velocity in 3D revealed that the motility performance is optimal around the wild-type hook length. We conclude that too-short hooks may be too stiff to function as a junction and too-long hooks may buckle and create instability in the flagellar bundle. Accordingly, peritrichously flagellated bacteria move most efficiently as the distance travelled per body rotation is maximal and body wobbling is minimized. Thus, our results suggest that the molecular ruler mechanism evolved to control flagellar hook growth to the optimal length consistent with efficient bundle formation. The hook-length control mechanism is therefore a prime example of how bacteria evolved elegant but robust mechanisms to maximize their fitness under specific environmental constraints

    Bosutinib in Resistant and Intolerant Pediatric Patients With Chronic Phase Chronic Myeloid Leukemia: Results From the Phase I Part of Study ITCC054/COG AAML1921

    Get PDF
    PURPOSE Bosutinib is approved for adults with chronic myeloid leukemia (CML): 400 mg once daily in newly diagnosed (ND); 500 mg once daily in resistant/intolerant (R/I) patients. Bosutinib has a different tolerability profile than other tyrosine kinase inhibitors (TKIs) and potentially less impact on growth (preclinical data). The primary objective of this first-in-child trial was to determine the recommended phase II dose (RP2D) for pediatric R/I and ND patients. PATIENTS AND METHODS In the phase I part of this international, open-label trial (ClinicalTrials.gov identifier: NCT04258943), children age 1-18 years with R/I (per European LeukemiaNet 2013) Ph+ CML were enrolled using a 6 + 4 design, testing 300, 350, and 400 mg/m2^{2} once daily with food. The RP2D was the dose resulting in 0/6 or 1/10 dose-limiting toxicities (DLTs) during the first cycle and achieving adult target AUC levels for the respective indication. As ND participants were only enrolled in phase II, the ND RP2D was selected based on data from R/I patients. RESULTS Thirty patients were enrolled; 27 were evaluable for DLT: six at 300 mg/m2^{2}, 11 at 350 mg/m2^{2} (one DLT), and 10 at 400 mg/m2^{2} (one DLT). The mean AUCs at 300 mg/m2^{2}, 350 mg/m2^{2}, and 400 mg/m2^{2} were 2.20 ÎŒg h/mL, 2.52 ÎŒg h/mL, and 2.66 ÎŒg h/mL, respectively. The most common adverse event was diarrhea (93%; ≄grade 3: 11%). Seven patients stopped because of intolerance and eight because of insufficient response. Complete cytogenetic and major molecular response to bosutinib appeared comparable with other published phase I/II trials with second-generation TKIs in children. CONCLUSION Bosutinib was safe and effective. The pediatric RP2D was 400 mg/m2^{2} once daily (max 600 mg/d) with food in R/I patients and 300 mg/m2^{2} once daily (max 500 mg/d) with food in ND patients, which achieved targeted exposures as per adult experience

    Bosutinib in Resistant and Intolerant Pediatric Patients With Chronic Phase Chronic Myeloid Leukemia:Results From the Phase I Part of Study ITCC054/COG AAML1921

    Get PDF
    PURPOSE Bosutinib is approved for adults with chronic myeloid leukemia (CML): 400 mg once daily in newly diagnosed (ND); 500 mg once daily in resistant/intolerant (R/I) patients. Bosutinib has a different tolerability profile than other tyrosine kinase inhibitors (TKIs) and potentially less impact on growth (preclinical data). The primary objective of this first-in-child trial was to determine the recommended phase II dose (RP2D) for pediatric R/I and ND patients. PATIENTS AND METHODS In the phase I part of this international, open-label trial (ClinicalTrials.gov identifier: NCT04258943), children age 1-18 years with R/I (per European LeukemiaNet 2013) Ph+ CML were enrolled using a 6 + 4 design, testing 300, 350, and 400 mg/m2 once daily with food. The RP2D was the dose resulting in 0/6 or 1/10 dose-limiting toxicities (DLTs) during the first cycle and achieving adult target AUC levels for the respective indication. As ND participants were only enrolled in phase II, the ND RP2D was selected based on data from R/I patients. Results Thirty patients were enrolled; 27 were evaluable for DLT: six at 300 mg/m2, 11 at 350 mg/m2 (one DLT), and 10 at 400 mg/m2 (one DLT). The mean AUCs at 300 mg/m2, 350 mg/m2, and 400 mg/m2 were 2.20 g h/mL, 2.52 g h/mL, and 2.66 g h/mL, respectively. The most common adverse event was diarrhea (93%; ≄grade 3: 11%). Seven patients stopped because of intolerance and eight because of insufficient response. Complete cytogenetic and major molecular response to bosutinib appeared comparable with other published phase I/II trials with second-generation TKIs in children. CONCLUSION Bosutinib was safe and effective. The pediatric RP2D was 400 mg/m2 once daily (max 600 mg/d) with food in R/I patients and 300 mg/m2 once daily (max 500 mg/d) with food in ND patients, which achieved targeted exposures as per adult experience.</p

    Bosutinib in Resistant and Intolerant Pediatric Patients With Chronic Phase Chronic Myeloid Leukemia:Results From the Phase I Part of Study ITCC054/COG AAML1921

    Get PDF
    PURPOSE Bosutinib is approved for adults with chronic myeloid leukemia (CML): 400 mg once daily in newly diagnosed (ND); 500 mg once daily in resistant/intolerant (R/I) patients. Bosutinib has a different tolerability profile than other tyrosine kinase inhibitors (TKIs) and potentially less impact on growth (preclinical data). The primary objective of this first-in-child trial was to determine the recommended phase II dose (RP2D) for pediatric R/I and ND patients. PATIENTS AND METHODS In the phase I part of this international, open-label trial (ClinicalTrials.gov identifier: NCT04258943), children age 1-18 years with R/I (per European LeukemiaNet 2013) Ph+ CML were enrolled using a 6 + 4 design, testing 300, 350, and 400 mg/m2 once daily with food. The RP2D was the dose resulting in 0/6 or 1/10 dose-limiting toxicities (DLTs) during the first cycle and achieving adult target AUC levels for the respective indication. As ND participants were only enrolled in phase II, the ND RP2D was selected based on data from R/I patients. Results Thirty patients were enrolled; 27 were evaluable for DLT: six at 300 mg/m2, 11 at 350 mg/m2 (one DLT), and 10 at 400 mg/m2 (one DLT). The mean AUCs at 300 mg/m2, 350 mg/m2, and 400 mg/m2 were 2.20 g h/mL, 2.52 g h/mL, and 2.66 g h/mL, respectively. The most common adverse event was diarrhea (93%; ≄grade 3: 11%). Seven patients stopped because of intolerance and eight because of insufficient response. Complete cytogenetic and major molecular response to bosutinib appeared comparable with other published phase I/II trials with second-generation TKIs in children. CONCLUSION Bosutinib was safe and effective. The pediatric RP2D was 400 mg/m2 once daily (max 600 mg/d) with food in R/I patients and 300 mg/m2 once daily (max 500 mg/d) with food in ND patients, which achieved targeted exposures as per adult experience.</p

    Glacier shrinkage will accelerate downstream decomposition of organic matter and alters microbiome structure and function.

    Get PDF
    peer reviewedThe shrinking of glaciers is among the most iconic consequences of climate change. Despite this, the downstream consequences for ecosystem processes and related microbiome structure and function remain poorly understood. Here, using a space-for-time substitution approach across 101 glacier-fed streams (GFSs) from six major regions worldwide, we investigated how glacier shrinkage is likely to impact the organic matter (OM) decomposition rates of benthic biofilms. To do this, we measured the activities of five common extracellular enzymes and estimated decomposition rates by using enzyme allocation equations based on stoichiometry. We found decomposition rates to average 0.0129 (% d-1 ), and that decreases in glacier influence (estimated by percent glacier catchment coverage, turbidity, and a glacier index) accelerates decomposition rates. To explore mechanisms behind these relationships, we further compared decomposition rates with biofilm and stream water characteristics. We found that chlorophyll-a, temperature, and stream water N:P together explained 61% of the variability in decomposition. Algal biomass, which is also increasing with glacier shrinkage, showed a particularly strong relationship with decomposition, likely indicating their importance in contributing labile organic compounds to these carbon-poor habitats. We also found high relative abundances of chytrid fungi in GFS sediments, which putatively parasitize these algae, promoting decomposition through a fungal shunt. Exploring the biofilm microbiome, we then sought to identify bacterial phylogenetic clades significantly associated with decomposition, and found numerous positively (e.g., Saprospiraceae) and negatively (e.g., Nitrospira) related clades. Lastly, using metagenomics, we found evidence of different bacterial classes possessing different proportions of EEA-encoding genes, potentially informing some of the microbial associations with decomposition rates. Our results, therefore, present new mechanistic insights into OM decomposition in GFSs by demonstrating that an algal-based "green food web" is likely to increase in importance in the future and will promote important biogeochemical shifts in these streams as glaciers vanish
    • 

    corecore