582 research outputs found

    Towards Deconstruction of the Type D (2,0) Theory

    Get PDF
    We propose a four-dimensional supersymmetric theory that deconstructs, in a particular limit, the six-dimensional (2,0)(2,0) theory of type DkD_k. This 4d theory is defined by a necklace quiver with alternating gauge nodes O(2k)\mathrm{O}(2k) and Sp(k)\mathrm{Sp}(k). We test this proposal by comparing the 6d half-BPS index to the Higgs branch Hilbert series of the 4d theory. In the process, we overcome several technical difficulties, such as Hilbert series calculations for non-complete intersections, and the choice of O\mathrm{O} versus SO\mathrm{SO} gauge groups. Consistently, the result matches the Coulomb branch formula for the mirror theory upon reduction to 3d

    Localization Properties of the Chalker-Coddington Model

    Full text link
    The Chalker Coddington quantum network percolation model is numerically pertinent to the understanding of the delocalization transition of the quantum Hall effect. We study the model restricted to a cylinder of perimeter 2M. We prove firstly that the Lyapunov exponents are simple and in particular that the localization length is finite; secondly that this implies spectral localization. Thirdly we prove a Thouless formula and compute the mean Lyapunov exponent which is independent of M.Comment: 29 pages, 1 figure. New section added in which simplicity of the Lyapunov spectrum and finiteness of the localization length are proven. To appear in Annales Henri Poincar

    Localization for Random Unitary Operators

    Full text link
    We consider unitary analogs of 11-dimensional Anderson models on l2(Z)l^2(\Z) defined by the product Uω=DωSU_\omega=D_\omega S where SS is a deterministic unitary and DωD_\omega is a diagonal matrix of i.i.d. random phases. The operator SS is an absolutely continuous band matrix which depends on a parameter controlling the size of its off-diagonal elements. We prove that the spectrum of UωU_\omega is pure point almost surely for all values of the parameter of SS. We provide similar results for unitary operators defined on l2(N)l^2(\N) together with an application to orthogonal polynomials on the unit circle. We get almost sure localization for polynomials characterized by Verblunski coefficients of constant modulus and correlated random phases

    Eigenvalue distributions from a star product approach

    Full text link
    We use the well-known isomorphism between operator algebras and function spaces equipped with a star product to study the asymptotic properties of certain matrix sequences in which the matrix dimension DD tends to infinity. Our approach is based on the su(2)su(2) coherent states which allow for a systematic 1/D expansion of the star product. This produces a trace formula for functions of the matrix sequence elements in the large-DD limit which includes higher order (finite-DD) corrections. From this a variety of analytic results pertaining to the asymptotic properties of the density of states, eigenstates and expectation values associated with the matrix sequence follows. It is shown how new and existing results in the settings of collective spin systems and orthogonal polynomial sequences can be readily obtained as special cases. In particular, this approach allows for the calculation of higher order corrections to the zero distributions of a large class of orthogonal polynomials.Comment: 25 pages, 8 figure

    On the energy growth of some periodically driven quantum systems with shrinking gaps in the spectrum

    Full text link
    We consider quantum Hamiltonians of the form H(t)=H+V(t) where the spectrum of H is semibounded and discrete, and the eigenvalues behave as E_n~n^\alpha, with 0<\alpha<1. In particular, the gaps between successive eigenvalues decay as n^{\alpha-1}. V(t) is supposed to be periodic, bounded, continuously differentiable in the strong sense and such that the matrix entries with respect to the spectral decomposition of H obey the estimate |V(t)_{m,n}|0, p>=1 and \gamma=(1-\alpha)/2. We show that the energy diffusion exponent can be arbitrarily small provided p is sufficiently large and \epsilon is small enough. More precisely, for any initial condition \Psi\in Dom(H^{1/2}), the diffusion of energy is bounded from above as _\Psi(t)=O(t^\sigma) where \sigma=\alpha/(2\ceil{p-1}\gamma-1/2). As an application we consider the Hamiltonian H(t)=|p|^\alpha+\epsilon*v(\theta,t) on L^2(S^1,d\theta) which was discussed earlier in the literature by Howland

    Can biological quantum networks solve NP-hard problems?

    Full text link
    There is a widespread view that the human brain is so complex that it cannot be efficiently simulated by universal Turing machines. During the last decades the question has therefore been raised whether we need to consider quantum effects to explain the imagined cognitive power of a conscious mind. This paper presents a personal view of several fields of philosophy and computational neurobiology in an attempt to suggest a realistic picture of how the brain might work as a basis for perception, consciousness and cognition. The purpose is to be able to identify and evaluate instances where quantum effects might play a significant role in cognitive processes. Not surprisingly, the conclusion is that quantum-enhanced cognition and intelligence are very unlikely to be found in biological brains. Quantum effects may certainly influence the functionality of various components and signalling pathways at the molecular level in the brain network, like ion ports, synapses, sensors, and enzymes. This might evidently influence the functionality of some nodes and perhaps even the overall intelligence of the brain network, but hardly give it any dramatically enhanced functionality. So, the conclusion is that biological quantum networks can only approximately solve small instances of NP-hard problems. On the other hand, artificial intelligence and machine learning implemented in complex dynamical systems based on genuine quantum networks can certainly be expected to show enhanced performance and quantum advantage compared with classical networks. Nevertheless, even quantum networks can only be expected to efficiently solve NP-hard problems approximately. In the end it is a question of precision - Nature is approximate.Comment: 38 page
    corecore