393 research outputs found

    Root asymptotics of spectral polynomials for the Lame operator

    Full text link
    The study of polynomial solutions to the classical Lam\'e equation in its algebraic form, or equivalently, of double-periodic solutions of its Weierstrass form has a long history. Such solutions appear at integer values of the spectral parameter and their respective eigenvalues serve as the ends of bands in the boundary value problem for the corresponding Schr\"odinger equation with finite gap potential given by the Weierstrass \wp-function on the real line. In this paper we establish several natural (and equivalent) formulas in terms of hypergeometric and elliptic type integrals for the density of the appropriately scaled asymptotic distribution of these eigenvalues when the integer-valued spectral parameter tends to infinity. We also show that this density satisfies a Heun differential equation with four singularities.Comment: final version, to appear in Commun. Math. Phys.; 13 pages, 3 figures, LaTeX2

    Linking the High-Resolution Architecture of Modern and Ancient Wave-Dominated Deltas : Processes, Products and Forcing Factors

    Get PDF
    Many thoughts and concepts used in this paper were initially developed as a result of work conducted with funding provided to the WAVE Consortium at the Australian School of Petroleum, University of Adelaide (RBA, BKV and JB). The consortium sponsors (Apache, BAPETCO, BHPBP, BG, BP, Chevron, ConocoPhillips, Nexen, OMV, Shell, Statoil, Todd Energy, and Woodside Energy) are thus thanked for making this work possible. We are indebted to journal reviewers Cornel Olariu and Howard Feldman, and to Associate Editor Janok Bhattacharya for numerous comments and suggestions that improved the clarity of the manuscript.Peer reviewedPostprin

    Can biological quantum networks solve NP-hard problems?

    Full text link
    There is a widespread view that the human brain is so complex that it cannot be efficiently simulated by universal Turing machines. During the last decades the question has therefore been raised whether we need to consider quantum effects to explain the imagined cognitive power of a conscious mind. This paper presents a personal view of several fields of philosophy and computational neurobiology in an attempt to suggest a realistic picture of how the brain might work as a basis for perception, consciousness and cognition. The purpose is to be able to identify and evaluate instances where quantum effects might play a significant role in cognitive processes. Not surprisingly, the conclusion is that quantum-enhanced cognition and intelligence are very unlikely to be found in biological brains. Quantum effects may certainly influence the functionality of various components and signalling pathways at the molecular level in the brain network, like ion ports, synapses, sensors, and enzymes. This might evidently influence the functionality of some nodes and perhaps even the overall intelligence of the brain network, but hardly give it any dramatically enhanced functionality. So, the conclusion is that biological quantum networks can only approximately solve small instances of NP-hard problems. On the other hand, artificial intelligence and machine learning implemented in complex dynamical systems based on genuine quantum networks can certainly be expected to show enhanced performance and quantum advantage compared with classical networks. Nevertheless, even quantum networks can only be expected to efficiently solve NP-hard problems approximately. In the end it is a question of precision - Nature is approximate.Comment: 38 page

    An overview of the mid-infrared spectro-interferometer MATISSE: science, concept, and current status

    Full text link
    MATISSE is the second-generation mid-infrared spectrograph and imager for the Very Large Telescope Interferometer (VLTI) at Paranal. This new interferometric instrument will allow significant advances by opening new avenues in various fundamental research fields: studying the planet-forming region of disks around young stellar objects, understanding the surface structures and mass loss phenomena affecting evolved stars, and probing the environments of black holes in active galactic nuclei. As a first breakthrough, MATISSE will enlarge the spectral domain of current optical interferometers by offering the L and M bands in addition to the N band. This will open a wide wavelength domain, ranging from 2.8 to 13 um, exploring angular scales as small as 3 mas (L band) / 10 mas (N band). As a second breakthrough, MATISSE will allow mid-infrared imaging - closure-phase aperture-synthesis imaging - with up to four Unit Telescopes (UT) or Auxiliary Telescopes (AT) of the VLTI. Moreover, MATISSE will offer a spectral resolution range from R ~ 30 to R ~ 5000. Here, we present one of the main science objectives, the study of protoplanetary disks, that has driven the instrument design and motivated several VLTI upgrades (GRA4MAT and NAOMI). We introduce the physical concept of MATISSE including a description of the signal on the detectors and an evaluation of the expected performances. We also discuss the current status of the MATISSE instrument, which is entering its testing phase, and the foreseen schedule for the next two years that will lead to the first light at Paranal.Comment: SPIE Astronomical Telescopes and Instrumentation conference, June 2016, 11 pages, 6 Figure

    Female firesetters: gender associated psychological and psychopathological features

    Get PDF
    Objective: Female firesetters are reported to commit nearly a third of deliberately set fires, yet there are limited studies examining the characteristics that distinguish them from suitable comparison groups. The aim of this study is to compare incarcerated female firesetters with incarcerated male firesetters and female offender controls on psychopathological and psychological features that could be targeted via therapeutic interventions. Method: Sixty-five female firesetters, 128 male firesetters, and 63 female offenders were recruited from the prison estate. Participants completed a battery of validated tools assessing psychiatric traits and psychological characteristics (i.e., inappropriate fire interest, emotion/self-regulation, social competence, self-concept, offense-supportive attitudes, and boredom proneness) highlighted in the existing literature. Results: Major depression and an internal locus of control distinguished female firesetters from male firesetters. Alcohol dependence, serious/problematic fire interest, and more effective anger regulation distinguished female firesetters from the female offender control group. Conclusions: This is the first study to examine differences between female firesetters, male firesetters, and female control offenders on both psychopathological features and psychological traits. These findings highlight the gender-specific and offence-specific needs of female firesetters that clinicians need to consider when implementing programs that ensure client responsivity. Keywords: firesetting, arson, psychopathology, female offender

    First direct detection of an exoplanet by optical interferometry; Astrometry and K-band spectroscopy of HR8799 e

    Get PDF
    To date, infrared interferometry at best achieved contrast ratios of a few times 10410^{-4} on bright targets. GRAVITY, with its dual-field mode, is now capable of high contrast observations, enabling the direct observation of exoplanets. We demonstrate the technique on HR8799, a young planetary system composed of four known giant exoplanets. We used the GRAVITY fringe tracker to lock the fringes on the central star, and integrated off-axis on the HR8799e planet situated at 390 mas from the star. Data reduction included post-processing to remove the flux leaking from the central star and to extract the coherent flux of the planet. The inferred K band spectrum of the planet has a spectral resolution of 500. We also derive the astrometric position of the planet relative to the star with a precision on the order of 100μ\,\muas. The GRAVITY astrometric measurement disfavors perfectly coplanar stable orbital solutions. A small adjustment of a few degrees to the orbital inclination of HR 8799 e can resolve the tension, implying that the orbits are close to, but not strictly coplanar. The spectrum, with a signal-to-noise ratio of 5\approx 5 per spectral channel, is compatible with a late-type L brown dwarf. Using Exo-REM synthetic spectra, we derive a temperature of 1150±501150\pm50\,K and a surface gravity of 104.3±0.310^{4.3\pm0.3}\,cm/s2^{2}. This corresponds to a radius of 1.170.11+0.13RJup1.17^{+0.13}_{-0.11}\,R_{\rm Jup} and a mass of 104+7MJup10^{+7}_{-4}\,M_{\rm Jup}, which is an independent confirmation of mass estimates from evolutionary models. Our results demonstrate the power of interferometry for the direct detection and spectroscopic study of exoplanets at close angular separations from their stars.Comment: published in A&

    Aryl urea substituted fatty acids: a new class of protonophoric mitochondrial uncoupler that utilises a synthetic anion transporter

    Full text link
    A new mitochondrial uncoupler that forms membrane permeable dimers through interactions of remote acidic and anion receptor groups.</p
    corecore