1,030 research outputs found

    Pressure profiles of distant galaxy clusters in the Planck catalog

    Full text link
    Successive releases of Planck data have demonstrated the strength of the Sunyaev--Zeldovich (SZ) effect in detecting hot baryons out to the galaxy cluster peripheries. To infer the hot gas pressure structure from nearby galaxy clusters to more distant objects, we developed a parametric method that models the spectral energy distribution and spatial anisotropies of both the Galactic thermal dust and the Cosmic Microwave Background, that are mixed-up with the cluster SZ and dust signals. Taking advantage of the best angular resolution of the High Frequency Instrument channels (5 arcmin) and using X-ray priors in the innermost cluster regions that are not resolved with Planck, this modelling allowed us to analyze a sample of 61 nearby members of the Planck catalog of SZ sources (0<z<0.50 < z < 0.5, z~=0.15\tilde{z} = 0.15) using the full mission data, as well as to examine a distant sample of 23 clusters (0.5<z<10.5 < z < 1, z~=0.56\tilde{z} = 0.56) that have been recently followed-up with XMM-Newton and Chandra observations. We find that (i) the average shape of the mass-scaled pressure profiles agrees with results obtained by the Planck collaboration in the nearby cluster sample, and that (ii) no sign of evolution is discernible between averaged pressure profiles of the low- and high-redshift cluster samples. In line with theoretical predictions for these halo masses and redshift ranges, the dispersion of individual profiles relative to a self-similar shape stays well below 10 % inside r500r_{500} but increases in the cluster outskirts.Comment: 12 pages, 10 figure

    Etude des sous-unités auxiliaires du canal sodium dépendant du potentiel chez l’insecte : approches moléculaires, électrophysiologiques et pharmacologiques (Thèse de Doctorat d&#039;Université)

    Get PDF
    Voltage-gated sodium (Nav) channel is a crucial molecular component of the cellular excitability. It represents a target of choice for neurotoxic insecticides used in pest control. Pyrazoline-type insecticide interacts with the main Nav channel subunit with a preference for its inactivated state. A recent study showed that auxiliary subunits of Drosophila melanogaster modified this conformation. However, little information is available concerning the role and the regulation of these auxiliary subunits. The objectives of this thesis were to characterize the auxiliary subunits of the American cockroach Periplaneta americana by molecular, electrophysiological and pharmacological approaches, in order to specify their functions. The first part of this work concerns the neuronal TEH1 subunit. Two variants, PaTEH1A and PaTEH1B resulting from an intron retention modifying only the C-terminal extremity, were cloned. Using the heterologous expression system Xenopus oocytes and the two microelectrodes voltage clamp technique, we highlighted that the C-terminal extremity was involved in the modulation of Nav channels electrophysiological and pharmacological properties. The second part concerns the discovery of other auxiliary subunits. We identified several variants resulting from alternative splicing events (2 variants for PaTipE and 4 for PaTEH2). Altogether, our results indicate that auxiliary subunits are diverse and play an important role in the modulation of Na+ current and should be considered to improve pharmacological studies

    Shapley Supercluster Survey: Ram-Pressure Stripping vs. Tidal Interactions in the Shapley Supercluster

    Get PDF
    We present two new examples of galaxies undergoing transformation in the Shapley supercluster core. These low-mass (stellar mass from 0.4E10 to 1E10 Msun) galaxies are members of the two clusters SC-1329-313 (z=0.045) and SC-1327-312 (z=0.049). Integral-field spectroscopy complemented by imaging in ugriK bands and in Halpha narrow-band are used to disentangle the effects of tidal interaction (TI) and ram-pressure stripping (RPS). In both galaxies, SOS-61086 and SOS-90630, we observe one-sided extraplanar ionized gas extending respectively 30kpc and 41kpc in projection from their disks. The galaxies' gaseous disks are truncated and the kinematics of the stellar and gas components are decoupled, supporting the RPS scenario. The emission of the ionized gas extends in the direction of a possible companion for both galaxies suggesting a TI. The overall gas velocity field of SOS-61086 is reproduced by ad hoc N-body/hydrodynamical simulations of RPS acting almost face-on and starting about 250Myr ago, consistent with the age of the young stellar populations. A link between the observed gas stripping and the cluster-cluster interaction experienced by SC-1329-313 and A3562 is suggested. Simulations of ram pressure acting almost edge-on are able to fully reproduce the gas velocity field of SOS-90630, but cannot at the same time reproduce the extended tail of outflowing gas. This suggests that an additional disturbance from a TI is required. This study adds a piece of evidence that RPS may take place in different environments with different impacts and witnesses the possible effect of cluster-cluster merger on RPS.Comment: 27 pages, 28 figures, MNRAS accepte

    A2163: Merger events in the hottest Abell galaxy cluster II. Subcluster accretion with galaxy-gas separation

    Full text link
    Located at z = 0.203, A2163 is a rich galaxy cluster with an intra-cluster medium (ICM) that exhibits extraordinary properties, including an exceptionally high X-ray luminosity, average temperature, and a powerful and extended radio halo. The irregular and complex morphology of its gas and galaxy structure suggests that this cluster has recently undergone major merger events that involve two or more cluster components. In this paper, we study the gas structure and dynamics by means of spectral-imaging analysis of X-ray data obtained from XMM-Newton and Chandra observations. From the evidence of a cold front, we infer the westward motion of a cool core across the E-W elongated atmosphere of the main cluster A2163-A. Located close to a galaxy over-density, this gas 'bullet' appears to have been spatially separated from its galaxy (and presumably dark matter component) as a result of high-velocity accretion. From gas brightness and temperature profile analysis performed in two opposite regions of the main cluster, we show that the ICM has been adiabatically compressed behind the crossing 'bullet' possibly because of shock heating, leading to a strong departure of the ICM from hydrostatic equilibrium in this region. Assuming that the mass estimated from the Yx proxy best indicates the overall mass of the system and that the western cluster sector is in approximate hydrostatic equilibrium before subcluster accretion, we infer a merger scenario between two subunits of mass ratio 1:4, leading to a present total system mass of M500 1.9×1015M\propto 1.9 \times 1015 M_{\odot}. The exceptional properties of A2163 present various similarities with those of 1E0657-56, the so-called 'bullet-cluster'. These similarities are likely to be related to a comparable merger scenario.Comment: A&A, in pres

    Particle dynamics in a non-flaring solar active region model

    Get PDF
    The aim of this work is to investigate and characterise particle behaviour in a (observationally-driven) 3D MHD model of the solar atmosphere above a slowly evolving, non-flaring active region. We use a relativistic guiding-centre particle code to investigate particle acceleration in a single snapshot of the 3D MHD simulation. Despite the lack of flare-like behaviour in the active region, direct acceleration of electrons and protons to non-thermal energies (≲ 42 MeV) was found, yielding spectra with high-energy tails which conform to a power law. Examples of particle dynamics, including particle trapping caused by local electric rather than magnetic field effects, are observed and discussed, together with implications for future experiments which simulate non-flaring active region heating and reconnection.Publisher PDFPeer reviewe

    Shapley Supercluster Survey (ShaSS): Galaxy Evolution from Filaments to Cluster Cores

    Get PDF
    We present an overview of a multi-wavelength survey of the Shapley supercluster (SSC; z~0.05) covering a contiguous area of 260 h^-2_70 Mpc^2 including the supercluster core. The project main aim is to quantify the influence of cluster-scale mass assembly on galaxy evolution in one of the most massive structures in the local Universe. The Shapley supercluster survey (ShaSS) includes nine Abell clusters (A3552, A3554, A3556, A3558, A3559, A3560, A3562, AS0724, AS0726) and two poor clusters (SC1327- 312, SC1329-313) showing evidence of cluster-cluster interactions. Optical (ugri) and near-infrared (K) imaging acquired with VST and VISTA allow us to study the galaxy population down to m*+6 at the supercluster redshift. A dedicated spectroscopic survey with AAOmega on the Anglo-Australian Telescope provides a magnitude-limited sample of supercluster members with 80% completeness at ~m*+3. We derive the galaxy density across the whole area, demonstrating that all structures within this area are embedded in a single network of clusters, groups and filaments. The stellar mass density in the core of the SSC is always higher than 9E09 M_sun Mpc^-3, which is ~40x the cosmic stellar mass density for galaxies in the local Universe. We find a new filamentary structure (~7 Mpc long in projection) connecting the SSC core to the cluster A3559, as well as previously unidentified density peaks. We perform a weak-lensing analysis of the central 1 sqdeg field of the survey obtaining for the central cluster A3558 a mass of M_500=7.63E14 M_sun, in agreement with X-ray based estimates.Comment: 22 pages, 11 figures. Accepted for publication on MNRA
    corecore