61 research outputs found
Grain size distributions of fault rocks: a comparison between experimentally and naturally deformed granitoids.
International audienceWe have investigated the grain size distribution (GSD) of granitoid fault rock by comparing experimentally produced gouge with fault rock from the Nojima Fault Zone. Triaxial experiments were carried out on wet and dry intact samples of Verzasca Gneiss at T = 300 and 500°C, Pc = 500 and 1030 MPa, ε = 0.013-1.6 x 10-4s-1. The GSD has been determined from SEM-micrographs and is characterized by the slope, D, of its log(frequency)-log(radius) histogram. The GSD is not fractal; we observe two slopes for all GSDs. The larger grains in experimentally deformed samples have a D value, D>, of 2.04 and 2.26 for feldspar and quartz gouge. Cracked grains yield values of D = 1.5-1.6.Increasing the confining pressure or temperature decreases the D-value. For grains smaller than ~2 μm another D-value, D = 2.02 for gouge and 1.64 for cracked grains; D< = 0.97. Grain size reduction in fault zones develops by a two-stage process: rupturing creates cracked grains; further displacement of fragments causes further comminution by wear and attrition. Cracked grains have been used to calculate the surface energy associated with faulting; it follows that this energy forms a small fraction in the total energy-budget of earthquakes
Modélisation par automate cellulaire des phénomènes diagénétiques des plateformes carbonatées. Calibration et paramétrisation à partir de deux cas d'études (l'Urgonien du Vercors (Crétacé inférieur, SE France) et les Calcaires Gris du Mont Compomolon (Lias, NE Italie).)
Une fois déposé, un sédiment est affecté au cours de son enfouissement par un ensemble de processus, regroupé sous le terme diagenèse, le transformant parfois légèrement ou bien suffisamment pour le rendre méconnaissable. Ces modifications ont des conséquences sur les propriétés pétrophysiques qui peuvent être positives ou négatives, c'est-à -dire les améliorer ou bien les détériorer. Une voie alternative de représentation numérique des processus, affranchie de l'utilisation des réactions physico-chimiques, a été adoptée et développée en mimant le déplacement du ou des fluides diagénétiques. Cette méthode s'appuie sur le principe d'un automate cellulaire et permet de simplifier les phénomènes sans sacrifier le résultat et permet de représenter les phénomènes diagénétiques à une échelle fine. Les paramètres sont essentiellement numériques ou mathématiques et nécessitent d'être mieux compris et renseignés à partir de données réelles issues d'études d'affleurements et du travail analytique effectué. La représentation des phénomènes de dolomitisation de faible profondeur suivie d'une phase de dédolomitisation a été dans un premier temps effectuée. Le secteur concerne une portion de la série carbonatée de l'Urgonien (Barrémien-Aptien), localisée dans le massif du Vercors en France. Ce travail a été réalisé à l'échelle de la section afin de reproduire les géométries complexes associées aux phénomènes diagénétiques et de respecter les proportions mesurées en dolomite. De plus, la dolomitisation a été simulée selon trois modèles d'écoulement. En effet, la dédolomitisation étant omniprésente, plusieurs hypothèses sur le mécanisme de dolomitisation ont été énoncées et testées. Plusieurs phases de dolomitisation per ascensum ont été également simulées sur des séries du Lias appartenant aux formations du groupe des Calcaire Gris, localisées au nord-est de l'Italie. Ces fluides diagénétiques empruntent le réseau de fracturation comme vecteur et affectent préférentiellement les lithologies les plus micritisées. Cette étude a permis de mettre en évidence la propagation des phénomènes à l'échelle de l'affleurement.Once deposited, sediment is affected by diagenetic processes during their burial history. These diagenetic processes are able to affect the petrophysical properties of the sedimentary rocks and also improve as such their reservoir capacity. The modelling of diagenetic processes in carbonate reservoirs is still a challenge as far as neither stochastic nor physicochemical simulations can correctly reproduce the complexity of features and the reservoir heterogeneity generated by these processes. An alternative way to reach this objective deals with process-like methods, which simplify the algorithms while preserving all geological concepts in the modelling process. The aim of the methodology is to conceive a consistent and realistic 3D model of diagenetic overprints on initial facies resulting in petrophysical properties at a reservoir scale. The principle of the method used here is related to a lattice gas automata used to mimic diagenetic fluid flows and to reproduce the diagenetic effects through the evolution of mineralogical composition and petrophysical properties. This method developed in a research group is well adapted to handle dolomite reservoirs through the propagation of dolomitising fluids and has been applied on two case studies. The first study concerns a mid-Cretaceous rudist and granular platform of carbonate succession (Urgonian Fm., Les Gorges du Nan, Vercors, SE France), in which several main diagenetic stages have been identified. The modelling in 2D is focused on dolomitisation followed by a dedolomitisation stage. For the second study, data collected from outcrops on the Venetian platform (Lias, Mont Compomolon NE Italy), in which several diagenetic stages have been identified. The main one is related to per ascensum dolomitisation along fractures. In both examples, the evolution of the effects of the mimetic diagenetic fluid on mineralogical composition can be followed through space and numerical time and help to understand the heterogeneity in reservoir properties.SAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF
Borehole water and hydrologic model around the Nojima fault, SW Japan
International audienceThe active fault drilling at Nojima Hirabayashi after the 1995 Hyogoken-nanbu (Kobe) earthquake (MJMA = 7.2) provides us with a unique opportunity to investigate subsurface fault structure and the in-situ properties of fault and fluid. The borehole intersected the fault gouge of the Nojima fault at a depth interval of 623m to 625m. The lithology is mostly Cretaceous granodiorite with some porphyry dikes. The fault core is highly permeable due to fracturing. The borehole water was sampled in 1996 and 2000 from the depth interval between 630 and 650 m, just below the fault core. The chemical and isotopic compositions were analyzed. Carbon and oxygen isotope ratios of carbonates from the fault core were analyzed to estimate the origin of fluid. The following conclusions were obtained. (1) The ionic and isotopic compositions of borehole water did not change from 1996 to 2000. They are mostly derived from local ground water as mentioned by Sato and Takahashi (2000). (2) Geochemical speciation revealed that the borehole water was derived from a relatively deep reservoir, which may be situated at a depth of 3 to 4 km where the temperature is about 80-90 ĚŠC. (3) The shallower part of the Nojima fault (shallower than the reservoir depth) has not been healed from the hydrological viewpoints 5 years after the event, in contrast to the rapid healing detected by S wave splitting (Tadokoro and Ando, 2002). (4) Precipitation of calcite from present borehole water since drilling supports the idea of precipitation of some calcite in coseismic hydraulic fractures in the fault core (Boullier et al., 2004). (5) Carbon and oxygen isotope ratios of calcite indicated that the meteoric water flux had been localized at the fault core. (6) A difference in the carbon isotope ratio between the footwall and the hangingwall suggests that the fault has been acted as a hydrologic barrier, although the permeability along the fault is still high
Structural evolution of the Nojima fault (Awaji Island, Japan) revisited from the GSJdrill hole at Hirabayashi.
International audienceFollowing the Hyogoken Nanbu earthquake (Januray 17, 1995, Mw = 7.2), three drillholes were sunk through the Nojima Fault (Awaji Island, Japan). Textural andpetrographic studies of the Geological Survey of Japan (GSJ) drill cores allow recognition of two deformation episodes. The first one is older than the deposition of the Middle to LateEocene Kobe Group, corresponds to a left-lateral movement on the Nojima fault and is expressed by pseudotachylytes, kinking of biotite crystals in the low-strain rocks and anintense laumontite hydrothermal alteration. The second one displaces the basal unconformity of the Kobe group, corresponds to a right-lateral reverse displacement and is expressed atleast by carbonate-filled hydraulic fractures and thin gouge zones. Different important deformation mechanisms are recorded by the fault rocks, but questions relating to theattribution of deformation and alteration features to one or other deformation episodes remain unresolved
An earthquake slip zone is a magnetic recorder
International audienceDuring an earthquake, the physical and the chemical transformations along a slip zone lead to an intense deformation within the gouge layer of a mature fault zone. Because the gouge contains ferromagnetic minerals, it has the capacity to behave as a magnetic recorder during an earthquake. This constitutes a conceivable way to identify earthquakes slip zones. In this paper, we investigate the magnetic record of the Chelungpu fault gouge that hosts the principal slip zone of the Chi-Chi earthquake (Mw 7.6, 1999, Taiwan) using Taiwan Chelungpu-fault Drilling Project core samples. Rock magnetic investigation pinpoints the location of the Chi-Chi mm-thick principal slip zone within the 16-cm thick gouge at ~1 km depth. A modern magnetic dipole of Earth magnetic field is recovered throughout this gouge but not in the wall rocks nor in the two other adjacent fault zones. This magnetic record resides essentially in two magnetic minerals; magnetite in the principal slip zone, and neoformed goethite elsewhere in the gouge. We propose a model where magnetic record: 1) is preserved during inter-seismic time, 2) is erased during co-seismic time and 3) is imprinted during post-seismic time when fluids cooled down. We suggest that the identification of a stable magnetic record carried by neoformed goethite may be a signature of friction-heating process in seismic slip zone
Stress rotations and the long-term weakness of the Median Tectonic Line and the Rokko-Awaji Segment
International audienceWe used a field analysis of rock deformation microstructures and mesostructures to reconstructthe long-term orientation of stresses around two major active fault systems in Japan, the Median TectonicLine and the Rokko-Awaji Segment. Our study reveals that the dextral slip of the two fault systems, activesince the Plio-Quaternary, was preceded by fault normal extension in the Miocene and sinistral wrenching inthe Paleogene. The two fault systems deviated the regional stress field at the kilometer scale in their vicinityduring each of the three tectonic regimes. The largest deviation, found in the Plio-Quaternary, is a more faultnormal rotation of the maximum horizontal stress to an angle of 79° with the fault strands, suggesting anextremely low shear stress on the Median Tectonic Line and the Rokko-Awaji Segment. Possible causes of thislong-term stress perturbation include a nearly total release of shear stress during earthquakes, a low staticfriction coefficient, or lowelastic properties of the fault zones comparedwith the country rock. Independently ofthe preferred interpretation, the nearly fault normal orientation of the direction of maximum compressionsuggests that the mechanical properties of the fault zones are inadequate for the buildup of a pore fluidpressure sufficiently elevated to activate slip. The long-term weakness of the Median Tectonic Line and theRokko-Awaji Segment may reside in low-friction/low-elasticity materials or dynamic weakening rather than inpreearthquake fluid overpressures
Structure des peridotites en enclave dans les kimberlites d'Afrique du sud.
The peridotite xenoliths from kimberlites are classified into three textural groups and seven textural subtypes: the coarse-grained textures (equant or tabular), the flaser textures (porphyroclastic, mosaic and mosaic fluidal), and the secondary textures (tabular and coarse-grained), which correspond to different states of the Earth mantle. The emphasis is placed on olivine in the definition of the textures because of its abundance in these xenoliths and of its greater sensitivity to the stress and simpler behaviour during the deformation. We compare the suites of xenoliths from different kimberlitic pipes and then the nodules from kimberlites with those from basalts: the flaser textures of nodules from kimberlites correspond to higher strain-rate and stress than those from basalts.Les péridotites en enclaves dans les kimberlites sont classées en sept types structuraux qui constituent trois grands groupes: structures à gros grain (équante et tabulaire), structures de tectonite (porphyroclastique, en mosaïque et en mosaïque fluidale) et enfin structures secondaires (tabulaires et à gros grain), qui correspondent à différents états du manteau supérieur. Cette classification est fondée essentiellement sur l'olivine qui est le minéral le plus abondant, le plus ductile et le mieux connu du manteau supérieur. On compare les cortèges d'enclaves des différents pipes kimberlitiques entre eux, puis les xénolites des kimberlites avec ceux des basaltes: il en résulte que les structures de tectonites des premiers correspondent à des taux de déformation et des contraintes plus élevés que les structures des seconds
Étude structurale du centre de l'Adrar des Iforas (Mali) : mylonites et tectogénèse
The Pan-African belt ot the Hoggar and the Adrar des Iforas results from the collision between the West-African Craton and the Pan-African mobile belt. In Mali, the suture zone, an island arc, a batholith and the Adrar des Iforas central zone may be recognized. The latter has been mapped and is the subject of this study. The principal lithostratigraphic units are the following: - the granulitic unit of Iforas (UGI) with eburnéan metamorphism is crosscut by pre-Pan-African doleritic dykes. An unconformable sedimentary cover attests that the UGI was outcropping before the Pan-African orogenesis. - metasediments Middle to Upper Proterozoic in age from passive continental margin. - volcanoclastic metasediments of late Proterozoic age. - a gneissic assemblage (kidalian assemblage) wich results from the deformation and metamorphism in deep conditions of the two first units together with pre-tectonic intrusives. During the D1 deformation phase , the UGI and its autochtonous to allochtonous Upper Proterozoic cover are thrust upon the kidalian assemblage. Structures, microstructures and metamorphic zonation suggest a SSW to NNE direction ofthrusting. The succession of metamorphisms of intermediate pressure (D1a) then high temperature (D1b) is attributed to a mecanism of doubling isotherms associated to thrust tectonics. The other phases are interpreted in terms of contractional folds (D2) and strike-slip faults (D3). Thus, some of the large NS and subvertical mylonitic zones which characterize the Hoggar shield are the result of the superposition of the three phases of deformation. The age of D& is uncertain and could be ca. 700 My. D2 and D3 could have started at 610-600 My and ended at 535 My. A numerical modelling of the collision has been realized. It confirms the relationships between the D2 and D3 phases and the collision between the West-African Craton and the Pan-African mobile belt and reproduces the rotation of shortening direction with time. However, it does not allow to integrate D1 in a continuous process with D2 and D3 and is consistent with the hypothesis of a thrust tectonics prior to the collision. A comparative review of other areas of the Hoggar shield in Algeria indicates that a thrust tectonics took place after the Eburnean and prior to Pan-African. Geochronological and kinematic studies are still necessary to precise the age and shortening directions of these events. Thus, the Hoggar shield remains an ideal area to study the processes of basement reworking.La chaîne pan-africaine du Hoggar et de l'Adrar des Iforas résulte de la collision du craton ouest-africain et de la zone mobile Pan-Africaine. Au Mali, on y reconnaît la zone de suture, un arc insulaire, un batholite et la zone centrale de l'Adrar des Iforas qui a connu une évolution complexe antérieure à la collision. C'est cette zone qui fait l'objet de ce mémoire et qui a été cartographiée. Les principales unités lithostratigraphiques présentes sont: - l'unité granulitique des Iforas (UGI) à métamorphisme éburnéen , recoupée par des filons doléritiques pré-panafricains et recouverte de sédiments discordants attestant qu'elle affleurait avant l'orogenèse pan-africaine; - des métasédiments de marge passive du Protérozoïque moyen et supérieur; - des métasédiments volcano-détritiques du Protérozoïque terminal; - un ensemble gneissique (assemblage kidalien) résultant du métamorphisme et de la déformation des deux premières unités et d'intrusifs pré-tectoniques déformés en conditions profondes. Pendant la phase de déformation D1, l'UGI et sa couverture autochtone à allochtone du protérozoïque supérieur sont charriées sur l'assemblage kidalien. Les structures, microstructures et la zonéographie du métamorphisme lié à D1 suggèrent un mouvement des nappes du SSW vers le NNE. La succession d'un métamorphisme de pression intermédiaire (D1a) puis de haute température (D1b) est attribuée à un mécanisme de redoublement des isothermes lié à la superposition des nappes. Les phases suivantes sont interprétées en termes de plis de serrage (D2) et de décrochement (D3). Ainsi, les grandes zones mylonitiques sub-méridiennes et subverticales qui caractérisent le Hoggar et l'Adrar des Iforas sont le résultat pour certaines de la superposition de ces trois phases. L'âge de la phase D1 est incertain et pourrait se situer autour de 700 Ma. Les phases D2 et D3 commenceraient à 610-600 Ma pour s'achever vers 535 Ma. Une simulation en élasticité de la collision a été réalisée. Elle confirme les relations entre les phases D2 et D3 et la collision de la zone mobile pan-africaine avec le craton ouest- africain et rend compte de la rotation des directions de raccourcissement en fonction du temps. Elle ne permet pas cependant d'intégrer la déformation D1 dans un processus continu avec D2 et D3 et appuie l'hypothèse de l'antériorité de la tectonique tangentielle par rapport à la collision. Une revue comparative des autres régions du Hoggar en Algérie montre l'existence d'une tectonique tangentielle post-éburnéenne mais anté-pan-africaine. Des études géochronologiques et cinématiques restent nécessaires pour connaître la succession de ces tectoniques dans le temps et leurs directions de raccourcissement. Le bouclier touareg reste le champ d'action idéal pour étudier les modalités de remobilisation des socles
- …