23 research outputs found

    De la molécule unique au tapis supramoléculaire sur surface de silicium passivée : Simulations numériques à l'échelle atomique

    Get PDF
    My thesis presents the study of the adsorption of single molecules and molecular self-assembly, by numerical simulations at the atomic scale, on a boron doped silicon surface denoted Si(111)(√(3 ) x√3)R30°-B. After presenting the calculation methods and describing the surface model, this thesis is made of two parts: the first one is about the adsorption of single molecules and the second one is devoted to the formation of supramolecular network. In the first part, I studied the adsorption of single molecules on the silicon surface doped boron Si (111)(√(3 ) x√3)R30°-B. I have investigated the adsorption mechanisms of three different molecules: a molecule of pyridyl-azobenzene, a molecule of the family of porphyrin (Cu-TBBP) and two molecules which belong to the family of phtalocyanine (H2Pc and CuPc). For every molecule, I conducted energetic, structural and electronic studies. In most of the cases, I completed this work by calculating STM images in order to compare with experimental results. The second part of this thesis deals with the study of self assembly of organic molecules on the surface of Si(111)(√(3 ) x√3)R30°-B. Molecular self assembly is a technique which allows the formation of highly organized architectures at the atomic scale. I have studied three different molecules forming self assembly on the surface of Si (111)(√(3 ) x√3)R30°-B : 1,3,5-tri(4-bromophenyl benzene) denoted TBB, 1,3,5-tri(4-iodophenyle benzene) denoted TIB et 1,3,5-triphenylbenzene denoted THB. As the formation of a self organized network is a result of equilibrium between molecule-molecule interaction and molecule-substrate one, I have evaluated the interaction energies by using different approximations (LDA, GGA and GGA+D). Then, I have studied the electronic properties of these assemblies by calculating the projected density of states, the charge difference and the Laplacien of the charge or the ELF function (Electronic Localization Function). In order to compare our results with experimental ones, STM images calculations were performed by using two different approaches: the approach of Tersoff-Hamann and the multi-scattering approach proposed by bSKAN code. Finally, I have studied the growth of C60 molecules on the self organized network formed by the TBB molecules deposited on the Si (111)(√(3 ) x√3)R30°-B surface. The energetic study shows that C60 molecules are adsorbed preferentially in the hexagonal nanopores in agreement with the STM observations.Ma thĂšse porte sur l’étude par simulations numĂ©riques Ă  l’échelle atomique de l’adsorption de molĂ©cules uniques et d’auto-assemblages molĂ©culaires sur la surface de silicium Si(111) dopĂ©e bore notĂ©e Si(111) (√(3 ) x√3)R30°-B. AprĂšs un premier chapitre de prĂ©sentation des mĂ©thodes de calcul, puis un chapitre consacrĂ© Ă  la surface Si(111)-B, la thĂšse se divise en deux grandes parties : l’une concernant l’adsorption de molĂ©cules uniques et l’autre consacrĂ©e Ă  l’adsorption de tapis molĂ©culaire.La premiĂšre partie concerne l’adsorption de molĂ©cules uniques sur la surface de Si(111) (√(3 ) x√3)R30°-B. Nous avons plus particuliĂšrement Ă©tudiĂ© trois molĂ©cules prĂ©sentant des mĂ©canismes d’adsorption diffĂ©rents : la molĂ©cule de pyridile-azobenzĂšne, une molĂ©cule de la famille des porphyrines (Cu-TBPP) et deux molĂ©cules appartenant Ă  la famille des phtalocyanines (H2Pc et CuPc). Dans chaque Ă©tude, nous avons effectuĂ© une Ă©tude Ă©nergĂ©tique, structurale et Ă©lectronique. Dans la plupart des cas, nous avons complĂ©tĂ© l’étude par un calcul d’image STM pour comparer avec les rĂ©sultats expĂ©rimentaux. A partir de cette Ă©tude, nous avons montrĂ© que les molĂ©cules interagissent diffĂ©remment avec la surface via des interactions Ă©lectrostatiques, des liaisons datives, des liaisons ioniques et un mĂ©canisme de cycloaddition. La deuxiĂšme partie de la thĂšse est dĂ©diĂ©e Ă  l’étude de l’auto-assemblage de molĂ©cules organiques sur la surface Si(111) (√(3 ) x√3)R30°-B. L’auto-assemblage molĂ©culaire est une technique permettant la fabrication d’architectures hautement organisĂ©es Ă  l’échelle atomique. Nous avons Ă©tudiĂ© trois molĂ©cules diffĂ©rentes formant un auto-assemblage sur la surface de Si(111)-B : 1,3,5-tri(4-bromophĂ©nyle benzĂšne) notĂ©e TBB, 1,3,5-tri(4-iodophĂ©nyle benzĂšne) notĂ©e TIB et 1,3,5-triphenylbenzene notĂ©e THB. Comme la formation d’un rĂ©seau auto-organisĂ© est la consĂ©quence d’un Ă©quilibre entre les interactions molĂ©cule-molĂ©cule et molĂ©cules-substrat, nous avons Ă©valuĂ© les Ă©nergies d’interaction mises en jeu en utilisant diffĂ©rentes approximations (LDA, GGA et GGA+D). Nous avons Ă©tudiĂ©, ensuite, les propriĂ©tĂ©s Ă©lectroniques de ces assemblages par le calcul des densitĂ©s d’états projetĂ©es, de la diffĂ©rence de la densitĂ© de charge, du Laplacien de la charge ou de la fonction ELF. Afin de comparer nos rĂ©sultats avec les rĂ©sultats expĂ©rimentaux, nous avons effectuĂ© un calcul d’image STM en utilisant deux approches : l’approche de Tersoff-Hamann et l’approche multidiffusion proposĂ©e par le code bSKAN. Dans une derniĂšre Ă©tape, nous avons Ă©tudiĂ© la recroissance de molĂ©cules de fullerĂšne C60 sur le rĂ©seau auto-organisĂ© de molĂ©cules de TBB dĂ©posĂ©es sur la surface Si(111) (√(3 ) x√3)R30° -B. Nous avons effectuĂ© une Ă©tude Ă©nergĂ©tique des molĂ©cules de C60 qui se dĂ©posent prĂ©fĂ©rentiellement dans les nanopores de forme hexagonale en accord avec les expĂ©riences STM

    Production of H2 by water radiolysis in cement paste under electron irradiation: A joint experimental and theoretical study

    Get PDF
    International audienceLong-term confinement of nuclear waste is one of the main challenges faced by the nuclear industry. Fission products such as 90 Sr and 137 Cs, both ÎČ âˆ’ emitters known to induce serious health hazards, represent the largest fraction of nuclear waste. Cement is a good candidate to store them, provided it can resist the effects of irradiation over time. Here, we have investigated the effects of ÎČ âˆ’ decay on cement by performing electron irradiation experiments on different samples. We show that H 2 production in cement, the main effect of water radiolysis, depends strongly on composition and relative humidity. First-principles calculations indicate that the water-rich interlayer regions with Ca 2+ ions act as electron traps that promote the formation of H 2. They also show that holes localize in water-rich regions in low Ca content samples and are then able to participate in H 2 production. This work provides new understanding of radiolysis effects in cements

    From the single molecule to supramolecular network on passivated silicon surface : Numerical simulations at the atomic scale

    No full text
    Ma thĂšse porte sur l’étude par simulations numĂ©riques Ă  l’échelle atomique de l’adsorption de molĂ©cules uniques et d’auto-assemblages molĂ©culaires sur la surface de silicium Si(111) dopĂ©e bore notĂ©e Si(111) (√(3 ) x√3)R30°-B. AprĂšs un premier chapitre de prĂ©sentation des mĂ©thodes de calcul, puis un chapitre consacrĂ© Ă  la surface Si(111)-B, la thĂšse se divise en deux grandes parties : l’une concernant l’adsorption de molĂ©cules uniques et l’autre consacrĂ©e Ă  l’adsorption de tapis molĂ©culaire.La premiĂšre partie concerne l’adsorption de molĂ©cules uniques sur la surface de Si(111) (√(3 ) x√3)R30°-B. Nous avons plus particuliĂšrement Ă©tudiĂ© trois molĂ©cules prĂ©sentant des mĂ©canismes d’adsorption diffĂ©rents : la molĂ©cule de pyridile-azobenzĂšne, une molĂ©cule de la famille des porphyrines (Cu-TBPP) et deux molĂ©cules appartenant Ă  la famille des phtalocyanines (H2Pc et CuPc). Dans chaque Ă©tude, nous avons effectuĂ© une Ă©tude Ă©nergĂ©tique, structurale et Ă©lectronique. Dans la plupart des cas, nous avons complĂ©tĂ© l’étude par un calcul d’image STM pour comparer avec les rĂ©sultats expĂ©rimentaux. A partir de cette Ă©tude, nous avons montrĂ© que les molĂ©cules interagissent diffĂ©remment avec la surface via des interactions Ă©lectrostatiques, des liaisons datives, des liaisons ioniques et un mĂ©canisme de cycloaddition. La deuxiĂšme partie de la thĂšse est dĂ©diĂ©e Ă  l’étude de l’auto-assemblage de molĂ©cules organiques sur la surface Si(111) (√(3 ) x√3)R30°-B. L’auto-assemblage molĂ©culaire est une technique permettant la fabrication d’architectures hautement organisĂ©es Ă  l’échelle atomique. Nous avons Ă©tudiĂ© trois molĂ©cules diffĂ©rentes formant un auto-assemblage sur la surface de Si(111)-B : 1,3,5-tri(4-bromophĂ©nyle benzĂšne) notĂ©e TBB, 1,3,5-tri(4-iodophĂ©nyle benzĂšne) notĂ©e TIB et 1,3,5-triphenylbenzene notĂ©e THB. Comme la formation d’un rĂ©seau auto-organisĂ© est la consĂ©quence d’un Ă©quilibre entre les interactions molĂ©cule-molĂ©cule et molĂ©cules-substrat, nous avons Ă©valuĂ© les Ă©nergies d’interaction mises en jeu en utilisant diffĂ©rentes approximations (LDA, GGA et GGA+D). Nous avons Ă©tudiĂ©, ensuite, les propriĂ©tĂ©s Ă©lectroniques de ces assemblages par le calcul des densitĂ©s d’états projetĂ©es, de la diffĂ©rence de la densitĂ© de charge, du Laplacien de la charge ou de la fonction ELF. Afin de comparer nos rĂ©sultats avec les rĂ©sultats expĂ©rimentaux, nous avons effectuĂ© un calcul d’image STM en utilisant deux approches : l’approche de Tersoff-Hamann et l’approche multidiffusion proposĂ©e par le code bSKAN. Dans une derniĂšre Ă©tape, nous avons Ă©tudiĂ© la recroissance de molĂ©cules de fullerĂšne C60 sur le rĂ©seau auto-organisĂ© de molĂ©cules de TBB dĂ©posĂ©es sur la surface Si(111) (√(3 ) x√3)R30° -B. Nous avons effectuĂ© une Ă©tude Ă©nergĂ©tique des molĂ©cules de C60 qui se dĂ©posent prĂ©fĂ©rentiellement dans les nanopores de forme hexagonale en accord avec les expĂ©riences STM.My thesis presents the study of the adsorption of single molecules and molecular self-assembly, by numerical simulations at the atomic scale, on a boron doped silicon surface denoted Si(111)(√(3 ) x√3)R30°-B. After presenting the calculation methods and describing the surface model, this thesis is made of two parts: the first one is about the adsorption of single molecules and the second one is devoted to the formation of supramolecular network. In the first part, I studied the adsorption of single molecules on the silicon surface doped boron Si (111)(√(3 ) x√3)R30°-B. I have investigated the adsorption mechanisms of three different molecules: a molecule of pyridyl-azobenzene, a molecule of the family of porphyrin (Cu-TBBP) and two molecules which belong to the family of phtalocyanine (H2Pc and CuPc). For every molecule, I conducted energetic, structural and electronic studies. In most of the cases, I completed this work by calculating STM images in order to compare with experimental results. The second part of this thesis deals with the study of self assembly of organic molecules on the surface of Si(111)(√(3 ) x√3)R30°-B. Molecular self assembly is a technique which allows the formation of highly organized architectures at the atomic scale. I have studied three different molecules forming self assembly on the surface of Si (111)(√(3 ) x√3)R30°-B : 1,3,5-tri(4-bromophenyl benzene) denoted TBB, 1,3,5-tri(4-iodophenyle benzene) denoted TIB et 1,3,5-triphenylbenzene denoted THB. As the formation of a self organized network is a result of equilibrium between molecule-molecule interaction and molecule-substrate one, I have evaluated the interaction energies by using different approximations (LDA, GGA and GGA+D). Then, I have studied the electronic properties of these assemblies by calculating the projected density of states, the charge difference and the Laplacien of the charge or the ELF function (Electronic Localization Function). In order to compare our results with experimental ones, STM images calculations were performed by using two different approaches: the approach of Tersoff-Hamann and the multi-scattering approach proposed by bSKAN code. Finally, I have studied the growth of C60 molecules on the self organized network formed by the TBB molecules deposited on the Si (111)(√(3 ) x√3)R30°-B surface. The energetic study shows that C60 molecules are adsorbed preferentially in the hexagonal nanopores in agreement with the STM observations

    Molecular chemisorption on passivated and defective boron doped silicon surfaces: a “forced” dative bond

    No full text
    International audienceWe investigate the adsorption mechanism of a single trans 4-pyridylazobenzene molecule (denoted by PAB) on a doped boron Si(111)√3×√3R30° surface (denoted by SiB) with or without boron-defects, by means of density functional theory calculations. The semiempirical approach proposed by Grimme allows us to take the dispersion correction into account. The role of the van der Waals correction in the adsorption geometries and energies is presented. In particular, two adsorption configurations are electronically studied. In the first one, the molecule is parallel to the surface and interacts with the SiB surface via the -N=N- bond. In the presence of a boron-defect, a Si-N chemical bond between the molecule and the surface is then formed, while electrostatic or/and van der Waals interactions are observed in the defectless surface. In the second adsorption configuration, the molecule presents different orientations with respect to the surface and interacts via the nitrogen atom of the pyridyl part of the PAB molecule. If the molecule is perpendicular to the perfect SiB surface, the lone-pair electrons associated with the heterocyclic nitrogen atom fill the empty dangling bond of a silicon adatom via a dative bond. Finally, in the presence of one boron-defect, the possibility of a "forced" dative bond, corresponding to a chemical bond formation between the PAB molecule and the silicon electron occupied dangling bond, is emphasized

    Full DFT-D description of a nanoporous supramolecular network on a silicon surface

    No full text
    International audienceWe present a full density-functional-theory study taking into account the van der Waals interactions of a 2D supramolecular network adsorbed on the Si(111)root 3x root 3R30 degrees-boron surface denoted SiB. We show that, contrarily to the previous calculations [B. Baris, V. Luzet, E. Duverger, Ph. Sonnet, F. Palmino, and F. Cherioux, Angew. Chem., Int. Ed. 50, 4094 (2011)] molecule-molecule interactions are attractive, thanks to van der Waals corrections which are essential to describe such systems. We confirm the importance of the substrate effect to achieve the molecular network on the boron doped silicon surface without covalent bond. Our simulated STM images, calculated in the framework of the bSKAN code, give better agreement with the experimental STM images than those obtained by the integrated LDOS calculations within the Tersoff-Hamann approximation. The tungsten tip presence is essential to retrieve three paired lobes as observed experimentally. The observed protrusions arise from the phenyl arms located above silicon adatoms. (C) 2013 American Institute of Physics. [http://dx.doi.org.gate6.inist.fr/10.1063/1.4792442

    DFT-D Studies of Single Porphyrin Molecule on Doped Boron Silicon Surfaces

    No full text
    International audienceWe present a theoretical study in the framework of density functional calculations, taking into account the van der Waals interactions (DFT-D) of isolated Cu-5,10,15,20-tetrakis(3,5-di-tert-butyl-phenyl) porphyrin (Cu-TBPP) molecules in a C2v conformation adsorbed on a Si(111)√3x√3R30°-boron surface [denoted Si(111)-B]. With this approach, we investigate interactions between perfect or boron-defect Si(111)-B substrates and the Cu-TBPP molecule as well as the consequences of demetallation of Cu-TBPP. For each model, we determine the structural equilibrium, the spatial charge-density distribution and the electronic properties of the ground state. We conclude that there is potential for Si adatom capture by a porphyrin without strong modification of the porphyrin response, as seen from simulated scanning tunneling microscopy (STM) images

    A new assisted molecular cycloaddition on boron doped silicon surfaces: a predictive DFT-D study

    No full text
    International audienceIn the framework of the Density Functional Theory (DFT-D), we investigate the phthalocyanine (H2Pc) molecule adsorption on SiC(0001)3 × 3 and Si(111)√3 × √3R30°-B (SiB) surfaces, and particularly compare the involved molecular adsorptions. In the H2Pc–SiC(0001)3 × 3 system, the molecular adsorption can be ascribed to a [10+2] cycloaddition. The H2Pc–SiB system is considered in three cases: defectless SiB surface (denoted SiB-0D) and SiB surfaces presenting one or two boron defects (denoted SiB-1D and SiB-2D respectively). The SiB-0D surface is passivated by a charge transfer from the Si adatoms to the boron atoms and therefore no chemical bond between the molecule and the substrate is observed. A similar molecular adsorption as already evidenced in the H2Pc–SiC(0001)3 × 3 system is involved in the SiB-2D case. In the case of the SiB-1D surface, two Si–N bonds (Si1–N1 and Si2–N2) are observed. One of them, Si1–N1, is nearly similar to that found in the H2Pc–SiB-2D system, but the Si2–N2 bond is unexpected. The Bader charge analysis suggests that, in the presence of the H2Pc molecule, the boron atoms behave like an electron reservoir whose availability varies following the involved molecular adsorption process. In the SiB-1D case, charges are transferred from the substrate to the molecule, allowing the Si2–N2 bond formation. Such a kind of molecular adsorption, not yet observed, could be designed by “assisted pseudo cycloaddition”

    C60 molecules grown on a Si-supported nanoporous supramolecular network: a DFT study

    No full text
    International audienceC60 fullerene assemblies on surfaces have attracted considerable attention because of their remarkable electronic properties. Now because of the competition between the molecules-substrate and the molecule-molecule interactions, an ordered C60 array is rather difficult to obtain on silicon surfaces. Here we present density functional theory simulations on C60 molecules deposited on a TBB (1,3,5-tri(1'-bromophenyl)benzene) monolayer lying on the Si(111)-boron surface (denoted SiB). The C60 molecules are located in the nanopores formed by the TBB network. Adsorption energy calculations show that the SiB surface governs the C60 vertical position, whereas the TBB network imposes the C60 lateral position, and stabilizes the molecule as well. The low charge density between the C60 and the SiB substrate on one hand, and on the other hand between the C60 and the TBB molecules, indicates that no covalent bond is formed between the C60 and its environment. However, according to charge density differences, a drastic charge reorganisation takes place between the Si adatoms and the C60 molecule, but also between the C60 and the surrounding TBB molecules. Finally, calculations show that a C60 array sandwiched between two TBB molecular layers is stable, which opens up the way to the growth of 3D supramolecular networks

    Etude de l’adsorption d’une molĂ©cule unique sur une surface passivĂ©e de silicium: Etude DFT-D

    No full text
    National audienceEtude de l’adsorption d’une molĂ©cule unique sur une surface passivĂ©e de silicium: Etude DFT-
    corecore