5 research outputs found
Anti-Inflammatory and Immunomodulatory Properties of a Crude Polysaccharide Derived from Green Seaweed <i>Halimeda tuna</i>: Computational and Experimental Evidences
In this study, we investigated for the first time the anti-inflammatory and immunomodulatory properties of crude polysaccharide (PSHT) extracted from green marine algae Halimeda tuna. PSHT exhibited anti-oxidant activity in vitro through scavenging 1, 1-diphenyl-2-picryl hydroxyl free radical, reducing Fe3+/ferricyanide complex, and inhibiting nitric oxide. PSHT maintained the erythrocyte membrane integrity and prevented hemolysis. Our results also showed that PSHT exerted a significant anti-edematic effect in vivo by decreasing advanced oxidation protein products and malondialdehyde levels and increasing the superoxide dismutase and glutathione peroxidase activities in rat’s paw model and erythrocytes. Interestingly, PSHT increased the viability of murine RAW264.7 macrophages and exerted an anti-inflammatory effect on lipopolysaccharide-stimulated cells by decreasing pro-inflammatory molecule levels, including nitric oxide, granulocyte-macrophage colony-stimulating factor (GM-CSF) and tumor necrosis factor-alpha (TNF-α). Our findings indicate that PSHT could be used as a potential immunomodulatory, anti-inflammatory, anti-hemolytic, and anti-oxidant agent. These results could be explained by the computational findings showing that polysaccharide building blocks bound both cyclooxygenase-2 (COX-2) and TNF-α with acceptable affinities
Anti-Vasculogenic, Antioxidant, and Anti-Inflammatory Activities of Sulfated Polysaccharide Derived from <i>Codium tomentosum</i>: Pharmacokinetic Assay
The purpose of this paper was to investigate the anti-inflammatory and anti-angiogenic activities of sulfated polysaccharide from C. tomentosum (PCT) using carrageenan (CARR)-induced paw edema in a rat model and anti-vasculogenic activity on a chorioallantoic membrane assay (CAM) model. Based on in vitro tests of anti-radical, total antioxidant, and reducing power activities, PCT presents a real interest via its antioxidant activity and ability to scavenge radical species. The in vivo pharmacological tests suggest that PCT possesses anti-inflammatory action by reducing paw edema and leukocyte migration, maintaining the redox equilibrium, and stabilizing the cellular level of several pro-/antioxidant system markers. It could significantly decrease the malondialdehyde levels and increase superoxide dismutase, glutathione peroxidase, and glutathione activities in local paw edema and erythrocytes during the acute inflammatory reaction of CARR. PCT pretreatment was effective against DNA alterations in the blood lymphocytes of inflamed rats and reduced the hematological alteration by restoring blood parameters to normal levels. The anti-angiogenic activity results revealed that CAM neovascularization, defined as the formation of new vessel numbers and branching patterns, was decreased by PCT in a dose-dependent manner, which supported the in silico bioavailability and pharmacokinetic findings. These results indicated the therapeutic effects of polysaccharides from C. tomentosum and their possible use as anti-proliferative molecules based on their antioxidant, anti-inflammatory, and anti-angiogenic activities