9 research outputs found
The CADM1 tumor suppressor gene is a major candidate gene in MDS with deletion of the long arm of chromosome 11.
Myelodysplastic syndromes (MDS) represent a heterogeneous group of clonal hematopoietic stem cell disorders characterized by ineffective hematopoiesis leading to peripheral cytopenias and in a substantial proportion of cases to acute myeloid leukemia. The deletion of the long arm of chromosome 11, del(11q), is a rare but recurrent clonal event in MDS. Here, we detail the largest series of 113 cases of MDS and myelodysplastic syndromes/myeloproliferative neoplasms (MDS/MPN) harboring a del(11q) analyzed at clinical, cytological, cytogenetic, and molecular levels. Female predominance, a survival prognosis similar to other MDS, a low monocyte count, and dysmegakaryopoiesis were the specific clinical and cytological features of del(11q) MDS. In most cases, del(11q) was isolated, primary and interstitial encompassing the 11q22-23 region containing ATM, KMT2A, and CBL genes. The common deleted region at 11q23.2 is centered on an intergenic region between CADM1 (also known as Tumor Suppressor in Lung Cancer 1) and NXPE2. CADM1 was expressed in all myeloid cells analyzed in contrast to NXPE2. At the functional level, the deletion of Cadm1 in murine Lineage-Sca1+Kit+ cells modifies the lymphoid-to-myeloid ratio in bone marrow, although not altering their multilineage hematopoietic reconstitution potential after syngenic transplantation. Together with the frequent simultaneous deletions of KMT2A, ATM, and CBL and mutations of ASXL1, SF3B1, and CBL, we show that CADM1 may be important in the physiopathology of the del(11q) MDS, extending its role as tumor-suppressor gene from solid tumors to hematopoietic malignancies
Les syndromes myélodysplasiques avec délétion 11q (étude du GFCH en collaboration avec le GFHC)
AIX-MARSEILLE2-BU Pharmacie (130552105) / SudocSudocFranceF
NiPTUNE: an automated pipeline for noninvasive prenatal testing in an accurate, integrative and flexible framework
International audienceAbstract Noninvasive prenatal testing (NIPT) consists of determining fetal aneuploidies by quantifying copy number alteration from the sequencing of cell-free DNA (cfDNA) from maternal blood. Due to the presence of cfDNA of fetal origin in maternal blood, in silico approaches have been developed to accurately predict fetal aneuploidies. Although NIPT is becoming a new standard in prenatal screening of chromosomal abnormalities, there are no integrated pipelines available to allow rapid, accurate and standardized data analysis in any clinical setting. Several tools have been developed, however often optimized only for research purposes or requiring enormous amount of retrospective data, making hard their implementation in a clinical context. Furthermore, no guidelines have been provided on how to accomplish each step of the data analysis to achieve reliable results. Finally, there is no integrated pipeline to perform all steps of NIPT analysis. To address these needs, we tested several tools for performing NIPT data analysis. We provide extensive benchmark of tools performances but also guidelines for running them. We selected the best performing tools that we benchmarked and gathered them in a computational pipeline. NiPTUNE is an open source python package that includes methods for fetal fraction estimation, a novel method for accurate gender prediction, a principal component analysis based strategy for quality control and fetal aneuploidies prediction. NiPTUNE is constituted by seven modules allowing the user to run the entire pipeline or each module independently. Using two cohorts composed by 1439 samples with 31 confirmed aneuploidies, we demonstrated that NiPTUNE is a valuable resource for NIPT analysis
Interphase FISH for BCR-ABL1 rearrangement on neutrophils: A decisive tool to discriminate a lymphoid blast crisis of chronic myeloid leukemia from a de novo BCR-ABL1 positive acute lymphoblastic leukemia
Discrimination between lymphoid blast crisis of chronic myeloid leukemia (CML) and de novo BCR-ABL1 positive acute lymphoblastic leukemia (ALL) represents a diagnostic challenge because this distinction has a major incidence on the management of patients. Here, we report an uncommon pediatric case of ALL with cryptic ins(22;9)(q11;q34q34) and p190-type BCR-ABL1 transcript. We performed interphase fluorescence in situ hybridization (FISH) for BCR-ABL1 rearrangement on blood neutrophils, which was positive consistent with the diagnosis of lymphoid blast crisis of CML. This case illustrates the major interest of interphase FISH for BCR-ABL1 rearrangement on blood neutrophils as a decisive method to discriminate a lymphoid blast crisis of CML from a de novo BCR-ABL1 positive ALL
Full-Term Human Placental Macrophages Eliminate Coxiella burnetii Through an IFN-γ Autocrine Loop
International audienceThe intracellular bacterium Coxiella burnetii is responsible for Q fever, an infectious disease that increases the risk of abortion, preterm labor, and stillbirth in pregnant women. It has been shown that C. burnetii replicates in BeWo trophoblast cell line and inhibits the activation and maturation of decidual dendritic cells. Although tissue macrophages are known to be targeted by C. burnetii, no studies have investigated the interplay between placental macrophages and C. burnetii. Here, CD14 + macrophages from 46 full-term placentas were isolated by positive selection. They consisted of a mixed population of maternal and fetal origin as shown by genotype analysis. We showed that C. burnetii organisms infected placental macrophages after 4 h. When these infected macrophages were incubated for an additional 9-day culture, they completely eliminated organisms as shown by quantitative PCR. The ability of placental macrophages to form multinucleated giant cells was not affected by C. burnetii infection. The transcriptional immune response of placental macrophages to C. burnetii was investigated using quantitative real-time RT-PCR on 8 inflammatory and 10 immunoregulatory genes. C. burnetii clearly induced an inflammatory profile. Interestingly, the production by placental macrophages of interferon-γ, a cytokine known to be involved in efficient immune responses, was dramatically increased in response to C. burnetii. In addition, a clear correlation between interferon-γ production and C. burnetii elimination was found, suggesting that macrophages from full-term placentas eliminate C. burnetii under the control of an autocrine production of interferon-γ
Clinical, biological, electrophysiological and therapeutic profile of patients with anti-MAG neuropathy according to MYD88L265P and CXCR4 mutations and underlying haemopathy
International audienceIntroduction Anti-MAG neuropathies are associated with an IgM monoclonal gammopathy of undetermined significance (MGUS) or with a malignant haemopathy. Our objective was to determine whether the presence of a haemopathy or somatic mutations of MYD88 and CXCR4 genes influences disease presentation and response to rituximab (RTX).Methods We included 79 patients (mean age 74 years, disease duration 9.68 years) who had a bone marrow aspiration with morphologic and immunophenotypic analysis. MYD88(L265P) and CXCR4 mutations were analysed in peripheral B cells. Information collected included: inflammatory neuropathy cause and treatment sensory sum score (ISS), MRC testing, overall neuropathy limitation scale (ONLS), Rash-built Overall Disability Score (RODS), ataxia score, anti-MAG titres, peak IgM dosage, neurofilament light chain levels, motor and sensory amplitudes, motor unit index (MUNIX) and motor unit size index (MUSIX) sum scores. Efficacy of RTX was evaluated at 12 months in 26 patients.Results Malignant haematological disorders were discovered in 17 patients (22%): 13 Waldenstrom macroglobulinemia, 3 marginal zone lymphoma and one mantle cell lymphoma. MYD88(L265P) mutation was detected in 29/60 (48%) patients and CXCR4 in 1 single patient. Disease severity, biological and electrophysiological data and response to RTX were comparable in patients with MGUS/lymphoma and patients with/without MYD88(L265P) mutation. ISS was lower and MUSIX higher in patients improved by RTX.Conclusions MYD88(L265P) mutation and underlying haemopathies are not predictive of a more severe disease. However, in cases of resistant and progressive neuropathy, they provide an opportunity to prescribe newly available drugs such as Bruton tyrosine kinase inhibitors
Performance of Semiconductor sequencing platform for non-invasive prenatal genetic screening for fetal aneuploidies: results from a multicenter prospective cohort study in a clinical setting
Objectives To validate and evaluate an integrated protocol for non‐invasive prenatal genetic screening (NIPS) for common fetal aneuploidies in a clinical setting, using the semiconductor sequencing technology, Ion Proton. Methods This prospective cohort study included 2505 pregnant women from seven academic genetic laboratories (695 high risk pregnancies in a validation study and 1810 pregnancies with a risk higher than 1/250 without ultrasound anomalies, in a real NIPS clinical setting). Cell free DNA from plasma samples was sequenced using Ion Proton sequencer, and sequencing data were analyzed using the open‐access software WISECONDOR. Performance metrics for detection of trisomies 21, 18 and 13, were calculated based on either fetal karyotype result or clinical data collected at birth. We also evaluated the failure rate and compared three methods of fetal fraction quantification (RASSF1A assay, DEFRAG and SANEFALCON software). Results Sensitivities and specificities were: 98.3% (95%CI: 93.5 ‐ 99.7) and 99.9% (95%CI: 99.4 ‐ 100) for T21, 96.7% (95%CI: 80.9 ‐ 99.8) and 100% (95%CI: 99.6 ‐ 100) for T18, 94.1% (95%CI: 69.2 ‐ 99.7) and 100% (95%CI: 99.6 ‐ 100) for T13. Our failure rate was 1.2% at first and as low as 0.6% after re‐testing some of the failed samples. Fetal fraction estimation by RASSF1A assay was consistent with DEFRAG results, both of which are adequate for routine diagnosis. Conclusions We describe one of the largest studies evaluating the Ion Proton based NIPS and the first clinical study reporting pregnancy outcome in a large set of patients. We demonstrate that this platform is highly efficient in detecting the three most common trisomies. Our protocol is robust and can be easily implemented in any medical genetics laboratory
Antenatal ultrasound features of isolated recurrent copy number variation in 7q11.23 (Williams syndrome and 7q11.23 duplication syndrome)
International audienceObjective: We aimed to gather fetal cases carrying a 7q11.23 copy number variation (CNV) and collect precise clinical data to broaden knowledge of antenatal features in these syndromes.Methods: We retrospectively recruited unrelated cases with 7q11.23 deletion, known as Williams-Beuren syndrome (WBS), or 7q11.23 duplication who had prenatal ultrasound findings. We collected laboratory and clinical data, fetal ultrasound, cardiac ultrasound and fetal autopsy reports from 18 prenatal diagnostic centers throughout France.Results: 40 fetuses with WBS were collected and the most common features were intra-uterine growth retardation (IUGR) (70.0%, 28/40), cardiovascular defects (30.0%, 12/40), polyhydramnios (17.5%, 7/40) and protruding tongue (15.0%, 6/40). Fetal autopsy reports were available for 11 cases and were compared with ultrasound prenatal features. Four cases of fetuses with 7q11.23 microduplication were collected and prenatal ultrasound signs were variable and often isolated.Conclusion: This work strengthens the fact that 7q11.23 CNVs are associated with a broad spectrum of antenatal presentations. IUGR and cardiovascular defects were the most frequent ultrasound signs. By reporting the biggest series of antenatal WBS, we aim to better delineate distinctive signs in fetuses with 7q11.23 CNVs
3q29 duplications: A cohort of 46 patients and a literature review
International audienceDuplications of the 3q29 cytoband are rare chromosomal copy number variations (CNVs) (overlapping or recurrent ~1.6 Mb 3q29 duplications). They have been associated with highly variable neurodevelopmental disorders (NDDs) with various associated features or reported as a susceptibility factor to the development of learning disabilities and neuropsychiatric disorders. The smallest region of overlap and the phenotype of 3q29 duplications remain uncertain. We here report a French cohort of 31 families with a 3q29 duplication identified by chromosomal microarray analysis (CMA), including 14 recurrent 1.6 Mb duplications, eight overlapping duplications (>1 Mb), and nine small duplications (<1 Mb). Additional genetic findings that may be involved in the phenotype were identified in 11 patients. Focusing on apparently isolated 3q29 duplications, patients present mainly mild NDD as suggested by a high rate of learning disabilities in contrast to a low proportion of patients with intellectual disabilities. Although some are de novo, most of the 3q29 duplications are inherited from a parent with a similar mild phenotype. Besides, the study of small 3q29 duplications does not provide evidence for any critical region. Our data suggest that the overlapping and recurrent 3q29 duplications seem to lead to mild NDD and that a severe or syndromic clinical presentation should warrant further genetic analyses