172 research outputs found
PAC-Bayesian Bounds for Randomized Empirical Risk Minimizers
The aim of this paper is to generalize the PAC-Bayesian theorems proved by
Catoni in the classification setting to more general problems of statistical
inference. We show how to control the deviations of the risk of randomized
estimators. A particular attention is paid to randomized estimators drawn in a
small neighborhood of classical estimators, whose study leads to control the
risk of the latter. These results allow to bound the risk of very general
estimation procedures, as well as to perform model selection
Sparsity and Incoherence in Compressive Sampling
We consider the problem of reconstructing a sparse signal from a
limited number of linear measurements. Given randomly selected samples of
, where is an orthonormal matrix, we show that minimization
recovers exactly when the number of measurements exceeds where is the number of
nonzero components in , and is the largest entry in properly
normalized: . The smaller ,
the fewer samples needed.
The result holds for ``most'' sparse signals supported on a fixed (but
arbitrary) set . Given , if the sign of for each nonzero entry on
and the observed values of are drawn at random, the signal is
recovered with overwhelming probability. Moreover, there is a sense in which
this is nearly optimal since any method succeeding with the same probability
would require just about this many samples
A population Monte Carlo scheme with transformed weights and its application to stochastic kinetic models
This paper addresses the problem of Monte Carlo approximation of posterior
probability distributions. In particular, we have considered a recently
proposed technique known as population Monte Carlo (PMC), which is based on an
iterative importance sampling approach. An important drawback of this
methodology is the degeneracy of the importance weights when the dimension of
either the observations or the variables of interest is high. To alleviate this
difficulty, we propose a novel method that performs a nonlinear transformation
on the importance weights. This operation reduces the weight variation, hence
it avoids their degeneracy and increases the efficiency of the importance
sampling scheme, specially when drawing from a proposal functions which are
poorly adapted to the true posterior.
For the sake of illustration, we have applied the proposed algorithm to the
estimation of the parameters of a Gaussian mixture model. This is a very simple
problem that enables us to clearly show and discuss the main features of the
proposed technique. As a practical application, we have also considered the
popular (and challenging) problem of estimating the rate parameters of
stochastic kinetic models (SKM). SKMs are highly multivariate systems that
model molecular interactions in biological and chemical problems. We introduce
a particularization of the proposed algorithm to SKMs and present numerical
results.Comment: 35 pages, 8 figure
Restricted Isometries for Partial Random Circulant Matrices
In the theory of compressed sensing, restricted isometry analysis has become
a standard tool for studying how efficiently a measurement matrix acquires
information about sparse and compressible signals. Many recovery algorithms are
known to succeed when the restricted isometry constants of the sampling matrix
are small. Many potential applications of compressed sensing involve a
data-acquisition process that proceeds by convolution with a random pulse
followed by (nonrandom) subsampling. At present, the theoretical analysis of
this measurement technique is lacking. This paper demonstrates that the th
order restricted isometry constant is small when the number of samples
satisfies , where is the length of the pulse.
This bound improves on previous estimates, which exhibit quadratic scaling
Neural-based Compression Scheme for Solar Image Data
Studying the solar system and especially the Sun relies on the data gathered
daily from space missions. These missions are data-intensive and compressing
this data to make them efficiently transferable to the ground station is a
twofold decision to make. Stronger compression methods, by distorting the data,
can increase data throughput at the cost of accuracy which could affect
scientific analysis of the data. On the other hand, preserving subtle details
in the compressed data requires a high amount of data to be transferred,
reducing the desired gains from compression. In this work, we propose a neural
network-based lossy compression method to be used in NASA's data-intensive
imagery missions. We chose NASA's SDO mission which transmits 1.4 terabytes of
data each day as a proof of concept for the proposed algorithm. In this work,
we propose an adversarially trained neural network, equipped with local and
non-local attention modules to capture both the local and global structure of
the image resulting in a better trade-off in rate-distortion (RD) compared to
conventional hand-engineered codecs. The RD variational autoencoder used in
this work is jointly trained with a channel-dependent entropy model as a shared
prior between the analysis and synthesis transforms to make the entropy coding
of the latent code more effective. Our neural image compression algorithm
outperforms currently-in-use and state-of-the-art codecs such as JPEG and
JPEG-2000 in terms of the RD performance when compressing extreme-ultraviolet
(EUV) data. As a proof of concept for use of this algorithm in SDO data
analysis, we have performed coronal hole (CH) detection using our compressed
images, and generated consistent segmentations, even at a compression rate of
bits per pixel (compared to 8 bits per pixel on the original data)
using EUV data from SDO.Comment: Accepted for publication in IEEE Transactions on Aerospace and
Electronic Systems (TAES). arXiv admin note: text overlap with
arXiv:2210.0647
Towards Machine Wald
The past century has seen a steady increase in the need of estimating and
predicting complex systems and making (possibly critical) decisions with
limited information. Although computers have made possible the numerical
evaluation of sophisticated statistical models, these models are still designed
\emph{by humans} because there is currently no known recipe or algorithm for
dividing the design of a statistical model into a sequence of arithmetic
operations. Indeed enabling computers to \emph{think} as \emph{humans} have the
ability to do when faced with uncertainty is challenging in several major ways:
(1) Finding optimal statistical models remains to be formulated as a well posed
problem when information on the system of interest is incomplete and comes in
the form of a complex combination of sample data, partial knowledge of
constitutive relations and a limited description of the distribution of input
random variables. (2) The space of admissible scenarios along with the space of
relevant information, assumptions, and/or beliefs, tend to be infinite
dimensional, whereas calculus on a computer is necessarily discrete and finite.
With this purpose, this paper explores the foundations of a rigorous framework
for the scientific computation of optimal statistical estimators/models and
reviews their connections with Decision Theory, Machine Learning, Bayesian
Inference, Stochastic Optimization, Robust Optimization, Optimal Uncertainty
Quantification and Information Based Complexity.Comment: 37 page
- âŠ