168 research outputs found
Tetraspanin (TSP-17) Protects Dopaminergic Neurons against 6-OHDA-Induced Neurodegeneration in <i>C. elegans</i>
Parkinson's disease (PD), the second most prevalent neurodegenerative disease after Alzheimer's disease, is linked to the gradual loss of dopaminergic neurons in the substantia nigra. Disease loci causing hereditary forms of PD are known, but most cases are attributable to a combination of genetic and environmental risk factors. Increased incidence of PD is associated with rural living and pesticide exposure, and dopaminergic neurodegeneration can be triggered by neurotoxins such as 6-hydroxydopamine (6-OHDA). In C. elegans, this drug is taken up by the presynaptic dopamine reuptake transporter (DAT-1) and causes selective death of the eight dopaminergic neurons of the adult hermaphrodite. Using a forward genetic approach to find genes that protect against 6-OHDA-mediated neurodegeneration, we identified tsp-17, which encodes a member of the tetraspanin family of membrane proteins. We show that TSP-17 is expressed in dopaminergic neurons and provide genetic, pharmacological and biochemical evidence that it inhibits DAT-1, thus leading to increased 6-OHDA uptake in tsp-17 loss-of-function mutants. TSP-17 also protects against toxicity conferred by excessive intracellular dopamine. We provide genetic and biochemical evidence that TSP-17 acts partly via the DOP-2 dopamine receptor to negatively regulate DAT-1. tsp-17 mutants also have subtle behavioral phenotypes, some of which are conferred by aberrant dopamine signaling. Incubating mutant worms in liquid medium leads to swimming-induced paralysis. In the L1 larval stage, this phenotype is linked to lethality and cannot be rescued by a dop-3 null mutant. In contrast, mild paralysis occurring in the L4 larval stage is suppressed by dop-3, suggesting defects in dopaminergic signaling. In summary, we show that TSP-17 protects against neurodegeneration and has a role in modulating behaviors linked to dopamine signaling
Tetraspanin CD9 participates in dysmegakaryopoiesis and stromal interactions in primary myelofibrosis
Primary myelofibrosis is characterized by clonal myeloproliferation, dysmegakaryopoiesis, extramedullary hematopoiesis associated with myelofibrosis and altered stroma in the bone marrow and spleen. The expression of CD9, a tetraspanin known to participate in megakaryopoiesis, platelet formation, cell migration and interaction with stroma, is deregulated in patients with primary myelofibrosis and is correlated with stage of myelofibrosis. We investigated whether CD9 participates in the dysmegakaryopoiesis observed in patients and whether it is involved in the altered interplay between megakaryocytes and stromal cells. We found that CD9 expression was modulated during megakaryocyte differentiation in primary myelofibrosis and that cell surface CD9 engagement by antibody ligation improved the dysmegakaryopoiesis by restoring the balance of MAPK and PI3K signaling. When co-cultured on bone marrow mesenchymal stromal cells from patients, megakaryocytes from patients with primary myelofibrosis displayed modified behaviors in terms of adhesion, cell survival and proliferation as compared to megakaryocytes from healthy donors. These modifications were reversed after antibody ligation of cell surface CD9, suggesting the participation of CD9 in the abnormal interplay between primary myelofibrosis megakaryocytes and stroma. Furthermore, silencing of CD9 reduced CXCL12 and CXCR4 expression in primary myelofibrosis megakaryocytes as well as their CXCL12-dependent migration. Collectively, our results indicate that CD9 plays a role in the dysmegakaryopoiesis that occurs in primary myelofibrosis and affects interactions between megakaryocytes and bone marrow stromal cells. These results strengthen the “bad seed in bad soil” hypothesis that we have previously proposed, in which alterations of reciprocal interactions between hematopoietic and stromal cells participate in the pathogenesis of primary myelofibrosis
Hepatocyte Permissiveness to Plasmodium Infection Is Conveyed by a Short and Structurally Conserved Region of the CD81 Large Extracellular Domain
Invasion of hepatocytes by Plasmodium sporozoites is a prerequisite for establishment of a malaria infection, and thus represents an attractive target for anti-malarial interventions. Still, the molecular mechanisms underlying sporozoite invasion are largely unknown. We have previously reported that the tetraspanin CD81, a known receptor for the hepatitis C virus (HCV), is required on hepatocytes for infection by sporozoites of several Plasmodium species. Here we have characterized CD81 molecular determinants required for infection of hepatocytic cells by P. yoelii sporozoites. Using CD9/CD81 chimeras, we have identified in CD81 a 21 amino acid stretch located in a domain structurally conserved in the large extracellular loop of tetraspanins, which is sufficient in an otherwise CD9 background to confer susceptibility to P. yoelii infection. By site-directed mutagenesis, we have demonstrated the key role of a solvent-exposed region around residue D137 within this domain. A mAb that requires this region for optimal binding did not block infection, in contrast to other CD81 mAbs. This study has uncovered a new functionally important region of CD81, independent of HCV E2 envelope protein binding domain, and further suggests that CD81 may not interact directly with a parasite ligand during Plasmodium infection, but instead may regulate the function of a yet unknown partner protein
Down-regulation of TM4SF is associated with the metastatic potential of gastric carcinoma TM4SF members in gastric carcinoma
<p>Abstract</p> <p>Background</p> <p>The aim of this study was to clarify the clinical significance of TM4SF members CD9, CD63 and CD82 in human gastric carcinoma.</p> <p>Methods</p> <p>By employing RT-PCR and immunohistochemistry, we studied the expression of CD9, CD63 and CD82 in 49 paired tissue specimens of normal gastric mucosa and carcinoma. All tissues were obtained from patients who underwent curative surgery.</p> <p>Results</p> <p>All normal gastric epithelium and gastric ulcer tissues strongly expressed transcripts and proteins of CD9, CD63 and CD82 as compared with corresponding controls. We found a significant correlation between CD63 mRNA level and different pM statuses (P = 0.036). Carcinomas in M0 stage revealed a stronger expression of CD63 than carcinomas in M1 stage. Expression of CD9 protein was found significantly stronger in pN0, pM0 than in advanced pN stages (P = 0.03), pM1 (P = 0.013), respectively. We found the relationship between CD63 expression, gender (p = 0.09) and nodal status (p = 0.028), respectively. Additionally, advanced and metastasized tumor tissues revealed significantly down-regulated CD82 protein expression (p = 0.033 and p = 0, respectively), which correlated with the tumor pTNM stage (p = 0.001).</p> <p>Conclusion</p> <p>The reduction of CD9, CD63 and CD82 expression are indicators for the metastatic potential of gastric carcinoma cells. Unlike their expression in other tumor types, the constitutive expression of CD63 may indicate that this factor does play a direct role in human gastric carcinogenesis.</p
Association of CD99 short and long forms with MHC class I, MHC class II and tetraspanin CD81 and recruitment into immunological synapses
<p>Abstract</p> <p>Background</p> <p>CD99, a leukocyte surface glycoprotein, is broadly expressed in many cell types. On the cell surface, CD99 is expressed as two distinct isoforms, a long form and a short form. CD99 has been demonstrated to play a key role in several biological processes, including the regulation of T cell activation. However, the molecular mechanisms by which CD99 participates in such processes are unclear. As CD99 contains a short cytoplasmic tail, it is unlikely that CD99 itself takes part in its multi-functions. Association of CD99 with other membrane proteins has been suggested to be necessary for exerting its functions.</p> <p>Results</p> <p>In this study, we analyzed the association of CD99 with other cell surface molecules involved in T cell activation. We demonstrate the association of MHC class I, MHC class II and tetraspanin CD81 with CD99 molecules on the cell surface. Association of CD99 with its partners was observed for both isoforms. In addition, we determined that CD99 is a lipid raft-associated membrane protein and is recruited into the immunologic synapse during T cell activation. The implication of CD99 on T cell activation was investigated. Inhibition of anti-CD3 induced T cell proliferation by an anti-CD99 monoclonal antibody was observed.</p> <p>Conclusions</p> <p>We provide evidence that CD99 directly interact and form the complex with the MHC class I and II, and tetraspanin CD81, and is functionally linked to the formation of the immunologic synapse. Upon T cell activation, CD99 engagement can inhibit T cell proliferation. We speculate that the CD99-MHC-CD81 complex is a tetraspanin web that plays an important role in T cell activation.</p
A Theoretical Analysis of How Segmentation of Dynamic Visualizations Optimizes Students' Learning
This article reviews studies investigating segmentation of dynamic visualizations (i.e., showing dynamic visualizations in pieces with pauses in between) and discusses two not mutually exclusive processes that might underlie the effectiveness of segmentation. First, cognitive activities needed for dealing with the transience of dynamic visualizations impose extraneous cognitive load, which may hinder learning. Segmentation may reduce the negative effect of this load by dividing animations into smaller units of information and providing pauses between segments that give students time for the necessary cognitive activities after each of those units of information. Second, event segmentation theory states that people mentally segment dynamic visualizations during perception (i.e., divide the information shown in pieces). Segmentation of dynamic visualisation could cue relevant segments to students, which may aid them in perceiving the structure underlying the process or procedure shown
- …