769 research outputs found
IR finiteness of the ghost dressing function from numerical resolution of the ghost SD equation
We solve numerically the Schwinger-Dyson (SD hereafter) ghost equation in the
Landau gauge for a given gluon propagator finite at k=0 (alpha_gluon=1) and
with the usual assumption of constancy of the ghost-gluon vertex ; we show that
there exist two possible types of ghost dressing function solutions, as we have
previously inferred from analytical considerations : one singular at zero
momentum, satisfying the familiar relation alpha_gluon+2 alpha_ghost=0 between
the infrared exponents of the gluon and ghost dressing functions(in short,
respectively alpha_G and alpha_F) and having therefore alpha_ghost=-1/2, and
another which is finite at the origin (alpha_ghost=0), which violates the
relation. It is most important that the type of solution which is realized
depends on the value of the coupling constant. There are regular ones for any
coupling below some value, while there is only one singular solution, obtained
only at a critical value of the coupling. For all momenta k<1.5 GeV where they
can be trusted, our lattice data exclude neatly the singular one, and agree
very well with the regular solution we obtain at a coupling constant compatible
with the bare lattice value.Comment: 17 pages, 3 figures (one new figure and a short paragraph added
Power Corrections to Perturbative QCD and OPE in Gluon Green Functions
We show that QCD Green functions in Landau Gauge exhibit sizable
corrections to the expected perturbative behavior at energies as high as 10
GeV. We argue that these are due to a -condensate which does not vanish
in Landau gauge.Comment: 3 pages 1 figure lattice2001 (gaugetheories
Quark propagator and vertex: systematic corrections of hypercubic artifacts from lattice simulations
This is the first part of a study of the quark propagator and the vertex
function of the vector current on the lattice in the Landau gauge and using
both Wilson-clover and overlap actions. In order to be able to identify lattice
artifacts and to reach large momenta we use a range of lattice spacings. The
lattice artifacts turn out to be exceedingly large in this study. We present a
new and very efficient method to eliminate the hypercubic (anisotropy)
artifacts based on a systematic expansion on hypercubic invariants which are
not SO(4) invariant. A simpler version of this method has been used in previous
works. This method is shown to be significantly more efficient than the popular
``democratic'' methods. It can of course be applied to the lattice simulations
of many other physical quantities. The analysis indicates a hierarchy in the
size of hypercubic artifacts: overlap larger than clover and propagator larger
than vertex function. This pleads for the combined study of propagators and
vertex functions via Ward identities.Comment: 14 pags., 9 fig
On the leading OPE corrections to the ghost-gluon vertex and the Taylor theorem
This brief note is devoted to a study of genuine non-perturbative corrections
to the Landau gauge ghost-gluon vertex in terms of the non-vanishing
dimension-two gluon condensate. We pay special attention to the kinematical
limit which the bare vertex takes for its tree-level expression at any
perturbative order, according to the well-known Taylor theorem. Based on our
OPE analysis, we also present a simple model for the vertex, in acceptable
agreement with lattice data.Comment: Final version published in JHE
O.P.E. and Power Corrections to the QCD coupling constant
Lattice data seems to show that power corrections should be convoked to
describe appropriately the transition of the QCD coupling constant running from
U.V. to I.R. domains. Those power corrections for the Landau-gauge MOM coupling
constant in a pure Yang-Mills theory (N_f=0) are analysed in terms of Operator
Product Expansion (O.P.E.) of two- and three-point Green functions, the gluon
condensate emerging from this study. The semi-classical picture given by
instantons can be also used to look for into the nature of the power
corrections and gluon condensate.Comment: 5 pages, talk given at XXX International Meeting on Fundamental
Physics, Jaca 200
Constraints on the IR behaviour of gluon and ghost propagator from Ward-Slavnov-Taylor identities
We consider the constraints of the Slavnov-Taylor identity of the IR
behaviour of gluon and ghost propagators and their compatibility with solutions
of the ghost Dyson-Schwinger equation and with the lattice picture.Comment: 5 pages, 2 figure
- …