26 research outputs found
Evaluation of antibiotic and cell-based therapy in preventing S. epidermidis-induced nonunion in rats.
Methicillin-resistant S. epidermidis (MRSE) is responsible for biofilm-related infections (Montanaro,2011; Romanò, 2013) and fracture nonunion, as recently demonstrated by our group (Lovati, 2016).The present study aims to investigate the efficacy of antibiotic or cell-based therapies in preventingbacterial infections and nonunion establishment.Under anesthesia, femoral fractures were performed in 30 rats, then the site of injury was injectedwith a clinical-derived MRSE strain and, finally, synthesized with stainless steel plates. Rats weredifferently treated as follows: MRSE-infected controls (IC); systemically-injected vancomycin (s-VANC);local vancomycin-enriched hydrogel (l-HYD); systemically-injected BMSCs (s-BMSCs); and locallyinjectedBMSCs (l-BMSCs).After 6 weeks, pro-inflammatory cytokines, quantitative micro-CT, histological and microbiologicalanalyses were carried out to investigate the host response to the different treatments.Half of the s-BMSCs rats died closely to the systemic cell injection, thus excluded for further analyses.Our results for the IC group were consistent with previously published data (Lovati, 2016), showingsigns of osteomyelitis and nonunion development. In s-VANC and l-HYD groups, micro-CT detected agood bony bridging and the microbiological counts were significantly lower with respect to the othergroups. Our study suggests that the association of s-VANC and l-HYD is an effective treatment toprevent biofilm-induced nonunions. Differently, we cannot positively support cell therapies for thispurpose due to the high risk related to the systemic cell injection, thus requiring further studies to beeventually proposed in clinics
Phenotypic and genomic identification of Staphylococcus epidermidis GOI1153754-03-14 isolated from an infected orthopedic prosthesis
Introduction: Staphylococcus epidermidis GOI1153754-03-14 is able to colonize orthopedic implants and to cause septic non-unions, as validated in a recent in vivo study (Lovati, 2016). To pore over the mechanisms leading to the biofilm formation on metallic implants, in the present study, we carried out the phenotypic and genotypic characterization of the clinical isolate S. epidermidis GOI1153754-03-14.Materials and Methods: The antimicrobial susceptibility and minimum inhibitory concentration (MIC) of the strain were evaluated through the Vitek2 System (Biomerieux), as well as its ability to form biofilm in vitro through a spectrophotometric assay (Stepanovich, 2000).The genomic DNA was extracted by Bacterial Genomic DNA Isolation Kit (Norgen Biotek Corp.). Libraries were prepared with the ThruPLEX DNA-seq (Rubicon Genomics) and then sequenced on the Illumina MiSeq platform through the MiSeq Reagent Kit v3 (600-cycles) to produce 300 bp paired-end reads (Illumina Inc.). Reads were quality-trimmed and gene annotated thanks to the RAST software (Aziz, 2008).Results: The antimicrobial susceptibility along with the MIC values are reported in Table 1. The outputs resulted in 51 contigs (Average = 50,720.6 Mb) with 396X fold average coverage. The total genome is 2,586,753 bp long with a GC content of 31.84% and an N50 value of 7 bp. The whole genome is composed by 2,467 protein-encoding genes and 64 RNAs (55 tRNAs and 9 rRNAs). The entire genome sequence has been deposited in the European Nucleotide Archive (ENA) under the accession no. FWCG01000000 (Bottagisio, 2017).Discussion: The genotypic and phenotypic characterization of the S. epidermidis GOI1153754-03-14 will enable a better comprehension of the mechanisms involved in the biofilm formation on orthopedic implants paving the way for innovative preventative and therapeutic strategies. Moreover, the sequence of this clinical strain is mandatory to develop dedicated proteomics analysis in order to highlight functional mechanism of biofilm formation
Exploring multielement nanogranular coatings to forestall implant-related infections
Introduction: As we approach the post-antibiotic era, the development of innovative
antimicrobial strategies that carry out their activities through non-specific mechanisms
could limit the onset and spread of drug resistance. In this context, the use of
nanogranular coatings of multielement nanoparticles (NPs) conjugated to the surface
of implantable biomaterialsmight represent a strategy to reduce the systemicdrawbacks
by locally confining the NPs effects against either prokaryotic or eukaryotic cells.
Methods: In the present study, two new multielement nanogranular coatings
combining Ag and Cu with either Ti or Mg were synthesized by a gas phase physical
method and tested against pathogens isolated from periprosthetic joint infections to
address their potential antimicrobial value and toxicity in an in vitro experimental setting.
Results: Overall, Staphylococcus aureus, Staphylococcus epidermidis and
Escherichia coli displayed a significantly decreased adhesion when cultured on
Ti-Ag-Cu and Mg-Ag-Cu coatings compared to uncoated controls, regardless of
their antibiotic resistance traits. A dissimilar behavior was observed when
Pseudomonas aeruginosa was cultured for 30 and 120 minutes upon the surface
of Ti-Ag-Cu and Mg-Ag-Cu-coated discs. Biofilm formation was mainly reduced
by the active effect of Mg-Ag-Cu compared to Ti-Ag-Cu and, again, coatings had a
milder effect on P. aeruginosa, probably due to its exceptional capability of
attachment and matrix production. These data were further confirmed by the
evaluation of bacterial colonization on nanoparticle-coated discs through
confocal microscopy. Finally, to exclude any cytotoxic effects on eukaryotic
cells, the biocompatibility of NPs-coated discs was studied. Results
demonstrated a viability of 95.8% and 89.4% of cells cultured in the presence of
Ti-Ag-Cu and Mg-Ag-Cu discs, respectively, when compared to negative controls.
Conclusion: In conclusion, the present study demonstrated the promising antiadhesive
features of both Ti-Ag-Cu and Mg-Ag-Cu coatings, as well as their action
in hampering the biofilm formation, highlighting the safe use of the tested multielement
families of nanoparticles as new strategies against bacterial attachment to
the surface of biomedical implants
Recent Evidence on Bioactive Glass Antimicrobial and Antibiofilm Activity: A Mini-Review
Bone defects caused by trauma or pathological events are major clinical and socioeconomic burdens. Thus, the efforts of regenerative medicine have been focused on the development of non-biodegradable materials resembling bone features. Consequently, the use of bioactive glass as a promising alternative to inert graft materials has been proposed. Bioactive glass is a synthetic silica-based material with excellent mechanical properties able to bond to the host bone tissue. Indeed, when immersed in physiological fluids, bioactive glass reacts, developing an apatite layer on the granule’s surface, playing a key role in the osteogenesis process. Moreover, the contact of bioactive glass with biological fluids results in the increase of osmotic pressure and pH due to the leaching of ions from granules’ surface, thus making the surrounding environment hostile to microbial growth. The bioactive glass antimicrobial activity is effective against a wide selection of aerobic and anaerobic bacteria, either in planktonic or sessile forms. Furthermore, bioglass is able to reduce pathogens’ biofilm production. For the aforementioned reasons, the use of bioactive glass might be a promising solution for the reconstruction of bone defects, as well as for the treatment and eradication of bone infections, characterized by bone necrosis and destruction of the bone structure
Tissue engineering approaches to develop decellularized tendon matrices functionalized with progenitor cells cultured under undifferentiated and tenogenic conditions
Tendon ruptures and retractions with an extensive tissue loss represent a major clinical problem and a great challenge in surgical reconstruction. Traditional approaches consist in autologous or allogeneic grafts, which still have some drawbacks. Hence, tissue engineering strategies aimed at developing functionalized tendon grafts. In this context, the use of xenogeneic tissues represents a promising perspective to obtain decellularized tendon grafts. This study is focused on the identification of suitable culture conditions for the generation of reseeded and functional decellularized constructs to be used as tendon grafts. Equine superficial digital flexor tendons were decellularized, reseeded with mesenchymal stem cells (MSCs) from bone marrow and statically cultured in two different culture media to maintain undifferentiated cells (U-MSCs) or to induce a terminal tenogenic differentiation (T-MSCs) for 24 hours, 7 and 14 days. Cell viability, proliferation, morphology as well as matrix deposition and type I and III collagen production were assessed by means of histological, immunohistochemical and semi-quantitative analyses. Results showed that cell viability was not affected by any culture conditions and active proliferation was maintained 14 days after reseeding. However, seeded MSCs were not able to penetrate within the dense matrix of the decellularized tendons. Nevertheless, U-MSCs synthesized a greater amount of extracellular matrix rich in type I collagen compared to T-MSCs. In spite of the inability to deeply colonize the decellularized matrix in vitro, reseeding tendon matrices with U-MSCs could represent a suitable method for the functionalization of biological constructs, considering also any potential chemoattractant capability of the newly deposed extracellular matrix to recruit resident cells. This bioengineering approach can be exploited to produce functionalized tendon constructs for the substitution of large tendon defects
A Precautionary Approach to Guide the Use of Transition Metal-Based Nanotechnology to Prevent Orthopedic Infections
The increase of multidrug-resistant bacteria remains a global concern. Among the proposed strategies, the use of nanoparticles (NPs) alone or associated with orthopedic implants represents a promising solution. NPs are well-known for their antimicrobial effects, induced by their size, shape, charge, concentration and reactive oxygen species (ROS) generation. However, this non-specific cytotoxic potential is a powerful weapon effective against almost all microorganisms, but also against eukaryotic cells, raising concerns related to their safe use. Among the analyzed transition metals, silver is the most investigated element due to its antimicrobial properties per se or as NPs; however, its toxicity raises questions about its biosafety. Even though it has milder antimicrobial and cytotoxic activity, TiO2 needs to be exposed to UV light to be activated, thus limiting its use conjugated to orthopedic devices. By contrast, gold has a good balance between antimicrobial activity as an NP and cytocompatibility because of its inability to generate ROS. Nevertheless, although the toxicity and persistence of NPs within filter organs are not well verified, nowadays, several basic research on NP development and potential uses as antimicrobial weapons is reported, overemphasizing NPs potentialities, but without any existing potential of translation in clinics. This analysis cautions readers with respect to regulation in advancing the development and use of NPs. Hopefully, future works in vivo and clinical trials will support and regulate the use of nano-coatings to guarantee safer use of this promising approach against antibiotic-resistant microorganisms
Host Environment Shapes S. aureus Social Behavior as Revealed by Microscopy Pattern Formation and Dynamic Aggregation Analysis
Understanding how bacteria adapt their social behavior to environmental changes is of crucial importance from both biological and clinical perspectives. Staphylococcus aureus is among the most common infecting agents in orthopedics, but its recalcitrance to the immune system and to antimicrobial treatments in the physiological microenvironment are still poorly understood. By means of optical and confocal microscopy, image pattern analysis, and mathematical modeling, we show that planktonic biofilm-like aggregates and sessile biofilm lifestyles are two co-existing and interacting phases of the same environmentally adaptive developmental process and that they exhibit substantial differences when S. aureus is grown in physiological fluids instead of common lab media. Physicochemical properties of the physiological microenvironment are proposed to be the key determinants of these differences. Besides providing a new tool for biofilm phenotypic analysis, our results suggest new insights into the social behavior of S. aureus in physiological conditions and highlight the inadequacy of commonly used lab media for both biological and clinical studies of bacterial development
Terminal sterilization of equine-derived decellularized tendons for clinical use
In the last few years, the demand for tissue substitutes has increased and decellularized matrices has been widely proposed in the medical field to restore severe damages thanks to high biocompatibility and biomechanical properties similar to the native tissues. However, biological grafts represent a potential source of contamination and disease transmission; thus, there is the need to achieve acceptable levels of sterility. Several sterilization methods have been investigated with no consensus on the outcomes in terms of minimizing structural damages and preserving functional features of the decellularized matrix for transplantation in humans. With the aim of making decellularized tendons safe for clinical use, we evaluated the cytocompatibility, and biochemical, structural and biomechanical variations of decellularized equine tendons sterilized with peracetic acid or β-irradiation and differently wet- or dry- stored at 4 °C or â\u88\u92 80 °C, respectively. Considering that both sterilization and long-term storage are crucial steps that could not be avoided, our results pointed at ionizing β-rays as terminal sterilization method for decellularized grafts followed by frozen dry storage. Indeed, this approach can maintain the integrity of collagen-based structures and can avoid biomechanical changes, thus making xenogeneic decellularized tendons a promising candidate for clinical use
Achilles Tendon Repair by Decellularized and Engineered Xenografts in a Rabbit Model
Tendon tissue ruptures often require the replacement of damaged tissues. The use of auto- or allografts is notoriously limited due to the scarce supply and the high risks of immune adverse reactions. To overcome these limitations, tissue engineering (TE) has been considered a promising approach. Among several biomaterials, decellularized xenografts are available in large quantity and could represent a possible solution for tendon reconstruction. The present study is aimed at evaluating TE xenografts in Achilles tendon defects. Specifically, the ability to enhance the biomechanical functionality, while improving the graft interaction with the host, was tested. The combination of decellularized equine-derived tendon xenografts with or without the matrix repopulation with autologous bone marrow mesenchymal stem cells (BMSCs) under stretch-perfusion dynamic conditions might improve the side-to-side tendon reconstruction. Thirty-six New Zealand rabbits were used to create 2 cm long segmental defects of the Achilles tendon. Then, animals were implanted with autograft (AG) as the gold standard control, decellularized graft (DG), or in vitro tissue-engineered graft (TEG) and evaluated postoperatively at 12 weeks. After sacrifice, histological, immunohistochemical, biochemical, and biomechanical analyses were performed along with the matrix metalloproteinases. The results demonstrated the beneficial role of undifferentiated BMSCs loaded within decellularized xenografts undergoing a stretch-perfusion culture as an immunomodulatory weapon reducing the inflammatory process. Interestingly, AG and TEG groups exhibited similar results, behaved similarly, and showed a significant superior tissue healing compared to DG in terms of newly formed collagen fibres and biomechanical parameters. Whereas, DG demonstrated a massive inflammatory and giant cell response associated with graft destruction and necrosis, absence of type I and III collagen, and a higher amount of proteoglycans and MMP-2, thus unfavourably affecting the biomechanical response. In conclusion, this in vivo study suggests a potential use of the proposed tissue-engineered constructs for tendon reconstruction