23 research outputs found

    Structural brain abnormalities in the common epilepsies assessed in a worldwide ENIGMA study

    Get PDF
    Progressive functional decline in the epilepsies is largely unexplained. We formed the ENIGMA-Epilepsy consortium to understand factors that influence brain measures in epilepsy, pooling data from 24 research centres in 14 countries across Europe, North and South America, Asia, and Australia. Structural brain measures were extracted from MRI brain scans across 2149 individuals with epilepsy, divided into four epilepsy subgroups including idiopathic generalized epilepsies (n =367), mesial temporal lobe epilepsies with hippocampal sclerosis (MTLE; left, n = 415; right, n = 339), and all other epilepsies in aggregate (n = 1026), and compared to 1727 matched healthy controls. We ranked brain structures in order of greatest differences between patients and controls, by meta-Analysing effect sizes across 16 subcortical and 68 cortical brain regions. We also tested effects of duration of disease, age at onset, and age-by-diagnosis interactions on structural measures. We observed widespread patterns of altered subcortical volume and reduced cortical grey matter thickness. Compared to controls, all epilepsy groups showed lower volume in the right thalamus (Cohen's d = \uc3\ua2 '0.24 to \uc3\ua2 '0.73; P < 1.49 \uc3\u97 10 \uc3\ua2 '4), and lower thickness in the precentral gyri bilaterally (d = \uc3\ua2 '0.34 to \uc3\ua2 '0.52; P < 4.31 \uc3\u97 10 \uc3\ua2 '6). Both MTLE subgroups showed profound volume reduction in the ipsilateral hippocampus (d = \uc3\ua2 '1.73 to \uc3\ua2 '1.91, P < 1.4 \uc3\u97 10 \uc3\ua2 '19), and lower thickness in extrahippocampal cortical regions, including the precentral and paracentral gyri, compared to controls (d = \uc3\ua2 '0.36 to \uc3\ua2 '0.52; P < 1.49 \uc3\u97 10 \uc3\ua2 '4). Thickness differences of the ipsilateral temporopolar, parahippocampal, entorhinal, and fusiform gyri, contralateral pars triangularis, and bilateral precuneus, superior frontal and caudal middle frontal gyri were observed in left, but not right, MTLE (d = \uc3\ua2 '0.29 to \uc3\ua2 '0.54; P < 1.49 \uc3\u97 10 \uc3\ua2 '4). Contrastingly, thickness differences of the ipsilateral pars opercularis, and contralateral transverse temporal gyrus, were observed in right, but not left, MTLE (d = \uc3\ua2 '0.27 to \uc3\ua2 '0.51; P < 1.49 \uc3\u97 10 \uc3\ua2 '4). Lower subcortical volume and cortical thickness associated with a longer duration of epilepsy in the all-epilepsies, all-other-epilepsies, and right MTLE groups (beta, b < \uc3\ua2 '0.0018; P < 1.49 \uc3\u97 10 \uc3\ua2 '4). In the largest neuroimaging study of epilepsy to date, we provide information on the common epilepsies that could not be realistically acquired in any other way. Our study provides a robust ranking of brain measures that can be further targeted for study in genetic and neuropathological studies. This worldwide initiative identifies patterns of shared grey matter reduction across epilepsy syndromes, and distinctive abnormalities between epilepsy syndromes, which inform our understanding of epilepsy as a network disorder, and indicate that certain epilepsy syndromes involve more widespread structural compromise than previously assumed

    Prediction of overall survival for patients with metastatic castration-resistant prostate cancer : development of a prognostic model through a crowdsourced challenge with open clinical trial data

    Get PDF
    Background Improvements to prognostic models in metastatic castration-resistant prostate cancer have the potential to augment clinical trial design and guide treatment strategies. In partnership with Project Data Sphere, a not-for-profit initiative allowing data from cancer clinical trials to be shared broadly with researchers, we designed an open-data, crowdsourced, DREAM (Dialogue for Reverse Engineering Assessments and Methods) challenge to not only identify a better prognostic model for prediction of survival in patients with metastatic castration-resistant prostate cancer but also engage a community of international data scientists to study this disease. Methods Data from the comparator arms of four phase 3 clinical trials in first-line metastatic castration-resistant prostate cancer were obtained from Project Data Sphere, comprising 476 patients treated with docetaxel and prednisone from the ASCENT2 trial, 526 patients treated with docetaxel, prednisone, and placebo in the MAINSAIL trial, 598 patients treated with docetaxel, prednisone or prednisolone, and placebo in the VENICE trial, and 470 patients treated with docetaxel and placebo in the ENTHUSE 33 trial. Datasets consisting of more than 150 clinical variables were curated centrally, including demographics, laboratory values, medical history, lesion sites, and previous treatments. Data from ASCENT2, MAINSAIL, and VENICE were released publicly to be used as training data to predict the outcome of interest-namely, overall survival. Clinical data were also released for ENTHUSE 33, but data for outcome variables (overall survival and event status) were hidden from the challenge participants so that ENTHUSE 33 could be used for independent validation. Methods were evaluated using the integrated time-dependent area under the curve (iAUC). The reference model, based on eight clinical variables and a penalised Cox proportional-hazards model, was used to compare method performance. Further validation was done using data from a fifth trial-ENTHUSE M1-in which 266 patients with metastatic castration-resistant prostate cancer were treated with placebo alone. Findings 50 independent methods were developed to predict overall survival and were evaluated through the DREAM challenge. The top performer was based on an ensemble of penalised Cox regression models (ePCR), which uniquely identified predictive interaction effects with immune biomarkers and markers of hepatic and renal function. Overall, ePCR outperformed all other methods (iAUC 0.791; Bayes factor >5) and surpassed the reference model (iAUC 0.743; Bayes factor >20). Both the ePCR model and reference models stratified patients in the ENTHUSE 33 trial into high-risk and low-risk groups with significantly different overall survival (ePCR: hazard ratio 3.32, 95% CI 2.39-4.62, p Interpretation Novel prognostic factors were delineated, and the assessment of 50 methods developed by independent international teams establishes a benchmark for development of methods in the future. The results of this effort show that data-sharing, when combined with a crowdsourced challenge, is a robust and powerful framework to develop new prognostic models in advanced prostate cancer.Peer reviewe

    Alterations in miRNA Levels in the Dentate Gyrus in Epileptic Rats

    No full text
    <div><p>The aim of this study was to characterize changes in miRNA expression in the epileptic dentate gyrus. Status epilepticus evoked by amygdala stimulation was used to induce epilepsy in rats. The dentate gyri were isolated at 7 d, 14 d, 30 d and 90 d after stimulation (n=5). Sham-operated time-matched controls were prepared for each time point (n=5). The miRNA expression was evaluated using Exiqon microarrays. Additionally, mRNA from the same animals was profiled using Affymetrix microarrays. We detected miRNA expression signatures that differentiate between control and epileptic animals. Significant changes in miRNA expression between stimulated and sham operated animals were observed at 7 and 30 d following stimulation. Moreover, we found that there are ensembles of miRNAs that change expression levels over time. Analysis of the mRNA expression from the same animals revealed that the expression of several mRNAs that are potential targets for miRNA with altered expression level is regulated in the expected direction. The functional characterization of miRNAs and their potential mRNA targets indicate that miRNA can participate in several molecular events that occur in epileptic tissue, including immune response and neuronal plasticity. This is the first report on changes in the expression of miRNA and the potential functional impact of these changes in the dentate gyrus of epileptic animals. Complex changes in the expression of miRNAs suggest an important role for miRNA in the molecular mechanisms of epilepsy.</p> </div

    Expression levels of selected miRNAs in individual sham-operated and stimulated animals.

    No full text
    <p>The bottom and the top of the box indicate the first and the third quartile, the band within the box indicates the median and the ends of the whiskers represent the lowest and the highest datum still within 1.5 IQR (interquartile range) of the lower and upper quartile, respectively. Each dot represents one animal. Blue are sham operated animals, and red are stimulated animals.</p

    miRNA expression profiles in the dentate gyrus of epileptic and sham-operated control animals at different times after SE.

    No full text
    <p>(<b>A</b>) Principle Component Analysis (PCA) of microarray data derived from epileptic (red) and sham-operated control animals (blue) at 7 d (square), 14 d (circle), 30 d (triangle), and 90 d (cross) after status epilepticus. Each mark represents an individual animal. Note that epileptic animals are separate from the controls. (<b>B</b>) A heatmap of the 66 miRNAs with altered expression levels in epileptic animals (<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0076051#pone-0076051-t001" target="_blank">Table 1</a>). Each column represents an individual animal and each row represents an individual miRNA. Colors on the heatmap represent the Z-score: higher – red, lower – green. Red color in the bar over the heatmap panel represents epileptic animals, and blue represents sham-operated control animals.</p

    Correlation matrix of expression levels between miRNAs with expression that differs significantly between sham and stimulated animals

    No full text
    <p>(<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0076051#pone-0076051-t001" target="_blank">Table 1</a>.) The color and size of the circles in the matrix code for level of correlation; red represents positive correlation and blue represents negative correlation. Numerical values of correlations are presented in the lower left part of the matrix. Values that do not reach statistical significance are crossed. </p

    Clustering analysis of the miRNA with altered expression levels in epileptic animals.

    No full text
    <p>(<b>A</b>) Clusters represent groups of miRNAs displaying similar alterations in expression over time after stimulation. Colors of lines within the clusters indicate the membership values of the expression profile to current cluster. Red and violet are high membership values and blue and green are low membership values. Members of each cluster are listed in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0076051#pone.0076051.s001" target="_blank">Table S1</a>. (<b>B</b>) Functional analysis of miRNA belonging to individual clusters. Functions associated with top networks according to Ingenuity Pathways are listed. (<b>C</b>) Functions belonging to “Neurological Disorder” and “Nervous System Development and Function” categories as defined by Ingenuity Pathways in individual miRNA clusters. Functions related to brain cancer and tumors are not included. Lists of functions with respective miRNAs are presented in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0076051#pone.0076051.s002" target="_blank">Table S2</a>.</p

    miR-124-3p is a chronic regulator of gene expression after brain injury

    No full text
    Traumatic brain injury (TBI) initiates molecular and cellular pathologies that underlie post-injury morbidities, including hippocampus-related memory decline and epileptogenesis. Non-coding small RNAs are master regulators of gene expression with the potential to affect multiple molecular pathways. To evaluate whether hippocampal gene expression networks are chronically regulated by microRNAs after TBI, we sampled the dentate gyrus of rats with severe TBI induced by lateral fluid-percussion injury 3 months earlier. Ingenuity pathway analysis revealed 30 upregulated miR-124-3p targets, suggesting that miR-124-3p is downregulated post-TBI (z-score = − 5.146, p < 0.05). Droplet digital polymerase chain reaction (ddPCR) and in situ hybridization confirmed the chronic downregulation of miR-124-3p (p < 0.05). Quantitative PCR analysis of two targets, Plp2 and Stat3, indicated that their upregulation correlated with the miR-124-3p downregulation (r = − 0.647, p < 0.05; r = − 0.629, p < 0.05, respectively). Immunohistochemical staining of STAT3 confirmed the increased protein expression. STRING analysis showed that 9 of the 30 miR-124-3p targets belonged to a STAT3 network. Reactome analysis and data mining connected the targets especially to inflammation and signal transduction. L1000CDS2 software revealed drugs (e.g., importazole, trichostatin A, and IKK-16) that could reverse the observed molecular changes. The translational value of our data was emphasized by in situ hybridization showing chronic post-traumatic downregulation of miR-124-3p in the dentate gyrus of TBI patients. Analysis of another brain injury model, status epilepticus, highlighted the fact that chronic downregulation of miR-124 is a common phenomenon after brain injury. Together, our findings indicate that miR-124-3p is a chronic modulator of molecular networks relevant to post-injury hippocampal pathologies in experimental models and in humans

    Chronically dysregulated NOTCH1 interactome in the dentate gyrus after traumatic brain injury

    No full text
    <div><p>Traumatic brain injury (TBI) can result in several dentate gyrus-regulated disabilities. Almost nothing is known about the chronic molecular changes after TBI, and their potential as treatment targets. We hypothesized that chronic transcriptional alterations after TBI are under microRNA (miRNA) control. Expression of miRNAs and their targets in the dentate gyrus was analyzed using microarrays at 3 months after experimental TBI. Of 305 miRNAs present on the miRNA-array, 12 were downregulated (p<0.05). In parallel, 75 of their target genes were upregulated (p<0.05). A bioinformatics analysis of miRNA targets highlighted the dysregulation of the transcription factor NOTCH1 and 39 of its target genes (NOTCH1 interactome). Validation assays confirmed downregulation of miR-139-5p, upregulation of <i>Notch1</i> and its activated protein, and positive enrichment of NOTCH1 target gene expression. These findings demonstrate that miRNA-based transcriptional regulation can be present at chronic time points after TBI, and highlight the NOTCH1 interactome as one of the mechanisms behind the dentate gyrus pathology-related morbidities.</p></div

    Neuronal loss after Traumatic Brain Injury (TBI).

    No full text
    <p>Representative photomicrographs of a thionin-stained section from the dentate gyrus of <b>(A)</b> a sham-operated control rat and <b>(B)</b> a rat with lateral fluid-percussion induced (FPI) TBI 3 months earlier. Note that the principal cells located in the granule cell layer and proximal CA3c are well preserved. The loss of hilar neurons, however, was remarkable. Dashed outline shows the dissected tissue used for mRNA and microRNA array analysis. <b>(C)</b> A heat map presenting the gene expression of neuronal marker <i>Hrnbp3</i> and 7 interneuronal markers (<i>Gad1</i>, <i>Gad2</i>, <i>Pvalb</i>, <i>Sst</i>, <i>Cck</i>, <i>Calb2</i>, and <i>Npy</i>) as well as the expression of the 12 downregulated miRNAs. Two rats with TBI clustered together with the controls. Expression of the <i>Hrnbp3</i> gene in these animals was not changed, whereas the gene expression of interneuronal markers was remarkably decreased. Abbreviations: g, granule cell layer; h, hilus; Max, maximum; Min, minimum; mol, molecular layer; TBI, traumatic brain injury.</p
    corecore