12 research outputs found

    Ultrasound measurements of brain structures differ between moderate-late preterm and full-term infants at term equivalent age

    Get PDF
    Background: Brain growth in moderate preterm (MP; gestational age (GA) 32(+0)-33(+6) weeks) and late preterm infants (LP; GA 34(+0)-36+6 weeks) may be impaired, even in the absence of brain injury.Aims: The aims of this study were to assess brain measurements of MP and LP infants, and to compare these with full-term infants (GA > 37 weeks) using linear cranial ultrasound (cUS) at term equivalent age (TEA).Study design: cUS data from two prospective cohorts were combined. Two investigators performed offline measurements on standard cUS planes. Eleven brain structures were compared between MP, LP and full-term infants using uni-and multivariable linear regression.Results were adjusted for postmenstrual age at cUS and corrected for multiple testing. Results: Brain measurements of 44 MP, 54 LP and 52 full-term infants were determined on cUS scans at TEA. Biparietal diameter and basal ganglia-insula width were smaller in MP (-9.1 mm and -1.7 mm, p < 0.001) and LP infants (-7.0 mm and -1.7 mm, p < 0.001) compared to full-term infants. Corpus callosum - fastigium length was larger in MP (+2.2 mm, p < 0.001) than in full-term infants. No significant differences were found between MP and LP infants.Conclusions: These findings suggest that brain growth in MP and LP infants differs from full-term infants. Whether these differences have clinical implications remains to be investigated.Research into fetal development and medicin

    Improved segmentation of neonatal brain MRI scans by addressing motion artifacts with data interpolation

    Get PDF
    negatively affect segmentation. The purpose of this study was to investigate whether motion-affected slices can be replaced by interpolated slices to enhance segmentation of neonatal brain MRI scans. METHODS: From August 2017 to November 2019, moderate-late preterm infants were enrolled in a prospective cohort study entitled Brain Imaging in Moderate-late Preterm infants (BIMP-study). Around term equivalent age, MRI of the brain was performed using a 3 Tesla MRI. T2-weighed (voxel size 0.35x0.35x2mm) transverse images were automatically segmented into eight brain structures with a neonatal segmentation toolbox [1]. Upon visual inspection, scans with motion artifacts that affected segmentation (25/112; motion group) and scans without motion artifacts (27/112; control group) were selected and used for analysis. Slices with motion artifacts were re-estimated using shape-preserving cubic spline interpolation [2, 3], followed by automatic segmentation of the interpolated scan. Analysis was performed in three stages. Firstly, scans from the control group were used to test interpolation reliability: 18/54 axial slices of these scans were interpolated. Segmentation results of uninterpolated and interpolated scans were compared using the Sørensen-Dice coefficient. Secondly, uninterpolated and interpolated volumes of the motion group were compared using the Wilcoxon Signed-Ranks test. Thirdly, interpolated volumes of the motion group were compared to uninterpolated volumes of the control group using the Mann-Whitney U test. RESULTS: In the control group, Sørensen-Dice coefficients ranged between 0.87 and 0.97. In the motion group, interpolation resulted in a significant decrease of cortical (Z=-2.9, p=0.004) and deep gray matter (Z=-3.30, p<0.001), and a significant increase of white matter (Z=2.84, p=0.005) volumes. No significant differences were found between interpolated volumes of the motion group and uninterpolated volumes of the control group. CONCLUSION: Shape preserving cubic spline interpolation enables reliable segmentation of motion-affected MRI scans in moderate-late preterm infants

    The CHOPIn Study : a Multicenter Study on Cerebellar Hemorrhage and Outcome in Preterm Infants

    No full text
    Cerebellar hemorrhage (CBH) is a frequent complication of preterm birth and may play an important and under-recognized role in neurodevelopment outcome. Association between CBH size, location, and neurodevelopment is still unknown. The main objective of this study was to investigate neurodevelopmental outcome at 2 years of age in a large number of infants with different patterns of CBH. Of preterm infants (≤ 34 weeks) with known CBH, perinatal factors, neuro-imaging findings, and follow-up at 2 years of age were retrospectively collected. MRI scans were reassessed to determine the exact size, number, and location of CBH. CBH was divided into three groups: punctate (≤ 4 mm), limited (> 4 mm but < 1/3 of the cerebellar hemisphere), or massive (≥ 1/3 of the cerebellar hemisphere). Associations between pattern of CBH, perinatal factors, and (composite) neurodevelopmental outcome were assessed. Data of 218 preterm infants with CBH were analyzed. Of 177 infants, the composite outcome score could be obtained. Forty-eight out of 119 infants (40%) with punctate CBH, 18 out of 35 infants (51%) with limited CBH, and 18 out of 23 infants (78%) with massive CBH had an abnormal composite outcome score. No significant differences were found for the composite outcome between punctate and limited CBH (P = 0.42). The risk of an abnormal outcome increased with increasing size of CBH. Infants with limited CBH have a more favorable outcome than infants with massive CBH. It is therefore important to distinguish between limited and massive CBH

    Analysis of deletions in DNA from patients with Becker and Duchenne muscular dystrophy

    No full text
    Duchenne muscular dystrophy (DMD) is an X-linked recessive genetic disorder for which the biochemical defect is as yet unknown. Recently, two cloned segments of human X-chromosome DNA have been described which detect structural alterations within or near the genetic locus responsible for the disorder. Both of these cloned segments were described as tightly linked to the locus and were capable of detecting deletions in the DNA of boys affected with DMD. In an attempt to determine more precisely the occurrence of these deletions within a large population of DMD patients and the accuracy of one of the segments, DXS164 (pERT87), in determining the inheritance of the DMD X chromosome, the subclones 1, 8 and 15 were made available to many investigators throughout the world. Here we describe the combined results of more than 20 research laboratories with respect to the occurrence of deletions at the DXS164 locus in DNA samples isolated from patients with DMD and Becker muscular dystrophy (BMD). The results indicate that the DXS164 locus apparently recombines with DMD 5% of the time, but is probably located between independent sites of mutation which yield DMD. The breakpoints of some deletions are delineated within the DXS164 locus, and it is evident that the deletions at the DMD locus are frequent and extremely large
    corecore