42 research outputs found

    Bronchoalveolar lavage in infants with recurrent lower respiratory symptoms

    Get PDF
    Background: Few data are available about the inflammatory cytokine profile of bronchoalveolar lavage (BAL) from young children with frequent wheeze. The first aim was to investigate the BAL cellular and cytokine profiles in infants with recurrent lower respiratory symptoms in whom bronchoscopy was indicated for clinical symptom evaluation. The second aim was to relate the BAL results with the histological findings of the endobronchial carina biopsies. Methods: Thirty-nine infants (median age 0.9 years) underwent lung function testing by whole-body plethysmography prior to the bronchoscopy. The BAL differential cell counts and cytokine levels were quantified. These findings were compared with the histological findings of the endobronchial carina biopsies. Results: The differential cytology reflected mainly that described for healthy infants with lymphocyte counts at the upper range level. A positive association between BAL CD8+ lymphocytes and neutrophils and endobronchial reticular basement membrane was found. Detectable levels of pro-inflammatory cytokine proteins IL-1 beta, IL-17A, IL-18, IL-23, and IL-33 were found, whereas levels of Th2-type cytokine proteins were low. Frequent wheeze was the only clinical characteristic significantly related to detectable combined pro-inflammatory cytokine profile. Lung function did not correlate with any cytokine. Conclusions: A positive association between BAL CD8+ lymphocytes and neutrophils and endobronchial reticular basement thickness was found. Detectable production of pro-inflammatory cytokines associated positively with frequent wheeze.Peer reviewe

    Pediatric severe asthma with fungal sensitization is mediated by steroid-resistant IL-33

    Get PDF
    Background: The mechanism underlying severe asthma with fungal sensitization (SAFS) is unknown. IL-33 is important in fungus-induced asthma exacerbations, but its role in fungal sensitization is unexplored. Objective: We sought to determine whether fungal sensitization in children with severe therapy-resistant asthma is mediated by IL-33. Methods: Eighty-two children (median age, 11.7 years; 63% male) with severe therapy-resistant asthma were included. SAFS (n= 38) was defined as specific IgE or skin prick test response positivity to Aspergillus fumigatus, Alternaria alternata, or Cladosporium herbarum. Clinical features and airway immunopathology were assessed. Chronic exposure to house dust mite and A alternata were compared in a neonatal mouse model. Results: Children with SAFS had earlier symptom onset (0.5 vs 1.5 years, P= .006), higher total IgE levels (637 vs 177 IU/mL, P= .002), and nonfungal inhalant allergen-specific IgE. Significantly more children with SAFS were prescribed maintenance oral steroids (42% vs 14%, P= .02). SAFS was associated with higher airway IL-33 levels. In neonatal mice A alternata exposure induced higher serum IgE levels, pulmonary IL-33 levels, and IL-13+ innate lymphoid cell (ILC) and TH2 cell numbers but similar airway hyperresponsiveness (AHR) compared with those after house dust mite exposure. Lung IL-33 levels, IL-13+ ILC numbers, TH2 cell numbers, IL-13 levels, and AHR remained increased with inhaled budesonide during A alternata exposure, but all features were significantly reduced in ST2-/- mice lacking a functional receptor for IL-33. Conclusion: Pediatric SAFS was associated with more oral steroid therapy and higher IL-33 levels. A alternata exposure resulted in increased IL-33-mediated ILC2 numbers, TH2 cell numbers, and steroid-resistant AHR. IL-33 might be a novel therapeutic target for SAFS

    Increased nuclear suppressor of cytokine signaling 1 in asthmatic bronchial epithelium suppresses rhinovirus induction of innate interferons

    Get PDF
    Background Rhinovirus infections are the dominant cause of asthma exacerbations, and deficient virus induction of IFN-α/β/λ in asthmatic patients is important in asthma exacerbation pathogenesis. Mechanisms causing this interferon deficiency in asthmatic patients are unknown. Objective We sought to investigate the expression of suppressor of cytokine signaling (SOCS) 1 in tissues from asthmatic patients and its possible role in impaired virus-induced interferon induction in these patients. Methods We assessed SOCS1 mRNA and protein levels in vitro, bronchial biopsy specimens, and mice. The role of SOCS1 was inferred by proof-of-concept studies using overexpression with reporter genes and SOCS1-deficient mice. A nuclear role of SOCS1 was shown by using bronchial biopsy staining, overexpression of mutant SOCS1 constructs, and confocal microscopy. SOCS1 levels were also correlated with asthma-related clinical outcomes. Results We report induction of SOCS1 in bronchial epithelial cells (BECs) by asthma exacerbation–related cytokines and by rhinovirus infection in vitro. We found that SOCS1 was increased in vivo in bronchial epithelium and related to asthma severity. SOCS1 expression was also increased in primary BECs from asthmatic patients ex vivo and was related to interferon deficiency and increased viral replication. In primary human epithelium, mouse lung macrophages, and SOCS1-deficient mice, SOCS1 suppressed rhinovirus induction of interferons. Suppression of virus-induced interferon levels was dependent on SOCS1 nuclear translocation but independent of proteasomal degradation of transcription factors. Nuclear SOCS1 levels were also increased in BECs from asthmatic patients. Conclusion We describe a novel mechanism explaining interferon deficiency in asthmatic patients through a novel nuclear function of SOCS1 and identify SOCS1 as an important therapeutic target for asthma exacerbations

    Tail walking in a bottlenose dolphin community : the rise and fall of an arbitrary cultural 'fad'

    Get PDF
    M.B. was supported by multiple grants from Whale & Dolphin Conservation (WDC).Social learning of adaptive behaviour is widespread in animal populations, but the spread of arbitrary behaviours is less common. In this paper, we describe the rise and fall of a behaviour called tail walking, where a dolphin forces the majority of its body vertically out of the water and maintains the position by vigourously pumping its tail, in a community of Indo-Pacific bottlenose dolphins (Tursiops aduncus). The behaviour was introduced into the wild following the rehabilitation of a wild female individual, Billie, who was temporarily co-housed with trained dolphins in a dolphinarium. This individual was sighted performing the behaviour seven years after her 1988 release, as was one other female dolphin named Wave. Initial production of the behaviour was rare, but following Billie's death two decades after her release, Wave began producing the behaviour at much higher rates, and several other dolphins in the community were subsequently sighted performing the behaviour. Social learning is the most likely mechanism for the introduction and spread of this unusual behaviour, which has no known adaptive function. These observations demonstrate the potential strength of the capacity for spontaneous imitation in bottlenose dolphins, and help explain the origin and spread of foraging specializations observed in multiple populations of this genus.PostprintPeer reviewe

    Perinatal paracetamol exposure in mice does not affect the development of allergic airways disease in early life

    Get PDF
    Background Current data concerning maternal paracetamol intake during pregnancy, or intake during infancy and risk of wheezing or asthma in childhood is inconclusive based on epidemiological studies. We have investigated whether there is a causal link between maternal paracetamol intake during pregnancy and lactation and the development of house dust mite (HDM) induced allergic airways disease (AAD) in offspring using a neonatal mouse model. Methods Pregnant mice were administered paracetamol or saline by oral gavage from the day of mating throughout pregnancy and/or lactation. Subsequently, their pups were exposed to intranasal HDM or saline from day 3 of life for up to 6 weeks. Assessments of airway hyper-responsiveness, inflammation and remodelling were made at weaning (3 weeks) and 6 weeks of age. Results Maternal paracetamol exposure either during pregnancy and/or lactation did not affect development of AAD in offspring at weaning or at 6 weeks. There were no effects of maternal paracetamol at any time point on airway remodelling or IgE levels. Conclusions Maternal paracetamol did not enhance HDM induced AAD in offspring. Our mechanistic data do not support the hypothesis that prenatal paracetamol exposure increases the risk of childhood asthma

    Impaired innate interferon induction in severe therapy resistant atopic asthmatic children

    Get PDF
    Deficient type I interferon-β and type III interferon-λ induction by rhinoviruses has previously been reported in mild/moderate atopic asthmatic adults. No studies have yet investigated if this occurs in severe therapy resistant asthma (STRA). Here, we show that compared with non-allergic healthy control children, bronchial epithelial cells cultured ex vivo from severe therapy resistant atopic asthmatic children have profoundly impaired interferon-β and interferon-λ mRNA and protein in response to rhinovirus (RV) and polyIC stimulation. Severe treatment resistant asthmatics also exhibited increased virus load, which negatively correlated with interferon mRNA levels. Furthermore, uninfected cells from severe therapy resistant asthmatic children showed lower levels of Toll-like receptor-3 mRNA and reduced retinoic acid inducible gene and melanoma differentiation-associated gene 5 mRNA after RV stimulation. These data expand on the original work, suggesting that the innate anti-viral response to RVs is impaired in asthmatic tissues and demonstrate that this is a feature of STRA

    Hybrid Computed Order Tracking

    No full text
    Vibration analysis is an integral part of modern condition monitoring and fault diagnosis systems for rotating machinery. Orders (cycles per revolution) are used as a frequency base for this analysis, thus making speed-related vibrations easier to detect. Fundamental to the performance of such systems is the accuracy and reliability of the required synchronously sampled vibration data. In this paper, the accuracy of three different synchronous sampling schemes are studied: a traditional hardware solution, computed order tracking and a hybrid of the two. Run-ups and run-downs are of particular interest in condition monitoring systems as they highlight many shaft defects. Also, because of the sometimes rapid shaft speed changes, this is just where the traditional approaches to producing synchronous sampling are prone to producing erroneous results. The three methods are assessed on data produced from a simulation of the rundown of a gas turbine shaft, typical to those found in the power industry. The use of this simulation allows the true accuracy of the techniques to be accessed, and inadequacies of traditional methods are clearly highlighted. The different sampling schemes rely on various interpolation algorithms. The accuracy and reliability of these algorithms is fundamental to the performance of the different sampling schemes, and hence a survey of the state-of-the-art interpolation algorithms is presented. This ensures that the most appropriate algorithms are identified, and as a result the novel computed order tracking technique introduced in this paper is shown to produce superior results
    corecore