67 research outputs found

    RELATIONSHIP AND CAUSALITY BETWEEN ECONOMIC GROWTH RATE AND CERTAIN DISEASES IN THE EUROPEAN UNION

    Get PDF
    The objective of this paper is to further research the already established relationship between economic growth and health by using the results of some previous works and applying them on the recent data, in order to find out if the economic growth rate iHealth Policy, European Union, Economic Development, Human Resources, GDP, Economic Growth, diseases

    Development of a SNP resource and a genetic linkage map for Atlantic cod (Gadus morhua)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Atlantic cod (<it>Gadus morhua</it>) is a species with increasing economic significance for the aquaculture industry. The genetic improvement of cod will play a critical role in achieving successful large-scale aquaculture. While many microsatellite markers have been developed in cod, the number of single nucleotide polymorphisms (SNPs) is currently limited. Here we report the identification of SNPs from sequence data generated by a large-scale expressed sequence tag (EST) program, focusing on fish originating from Canadian waters.</p> <p>Results</p> <p>A total of 97976 ESTs were assembled to generate 13448 contigs. We detected 4753 SNPs that met our selection criteria (depth of coverage ≥ 4 reads; minor allele frequency > 25%). 3072 SNPs were selected for testing. The percentage of successful assays was 75%, with 2291 SNPs amplifying correctly. Of these, 607 (26%) SNPs were monomorphic for all populations tested. In total, 64 (4%) of SNPs are likely to represent duplicated genes or highly similar members of gene families, rather than alternative alleles of the same gene, since they showed a high frequency of heterozygosity. The remaining polymorphic SNPs (1620) were categorised as validated SNPs. The mean minor allele frequency of the validated loci was 0.258 (± 0.141). Of the 1514 contigs from which validated SNPs were selected, 31% have a significant blast hit. For the SNPs predicted to occur in coding regions (141), we determined that 36% (51) are non-synonymous. Many loci (1033 SNPs; 64%) are polymorphic in all populations tested. However a small number of SNPs (184) that are polymorphic in the Western Atlantic were monomorphic in fish tested from three European populations. A preliminary linkage map has been constructed with 23 major linkage groups and 924 mapped SNPs.</p> <p>Conclusions</p> <p>These SNPs represent powerful tools to accelerate the genetic improvement of cod aquaculture. They have been used to build a genetic linkage map that can be applied to quantitative trait locus (QTL) discovery. Since these SNPs were generated from ESTs, they are linked to specific genes. Genes that map within QTL intervals can be prioritized for testing to determine whether they contribute to observed phenotypes.</p

    Integrating the markers Pan I and haemoglobin with the genetic linkage map of Atlantic cod (Gadus morhua)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Haemoglobin (Hb) and pantophysin (Pan I) markers have been used intensively in population studies of Atlantic cod (<it>Gadus morhua</it>) and in the analysis of traits such as temperature tolerance, growth characteristics and sexual maturation. We used an Illumina GoldenGate panel and the KASPar SNP genotyping system to analyse SNPs in three Atlantic cod families, one of which was polymorphic at the Hb β1 locus, and to generate a genetic linkage map integrating Pan I and multiple Hb loci.</p> <p>Findings</p> <p>Data generated allowed the mapping of nine Hb loci, the Pan I locus, and other 122 SNPs onto an existing linkage genetic map for Atlantic cod. Four Hb genes (i.e. α1, α4, β1 and β5) have been mapped on linkage group (LG) 2 while the other five (i.e. α2, α3, β2, β3 and β4) were placed on LG18. Pan I was mapped on LG 1 using a newly developed KASPar assay for a SNP variable only in Pan I<sup>A </sup>allelic variants. The new linkage genetic map presented here comprises 1046 SNPs distributed between 23 linkage groups, with a length of 1145.6 cM. A map produced by forcing additional loci, resulting in a reduced goodness-of-fit for mapped markers, allowed the mapping of a total of 1300 SNPs. Finally, we compared our genetic linkage map data with the genetic linkage map data produced by a different group and identified 29 shared SNPs distributed on 10 different linkage groups.</p> <p>Conclusions</p> <p>The genetic linkage map presented here incorporates the marker Pan I, together with multiple Hb loci, and integrates genetic linkage data produced by two different research groups. This represents a useful resource to further explore if Pan I and Hbs or other genes underlie quantitative trait loci (QTL) for temperature sensitivity/tolerance or other phenotypes.</p

    Carrageenans from Red Seaweeds As Promoters of Growth and Elicitors of Defense Response in Plants

    Get PDF
    Plants incessantly encounter abiotic and biotic stresses that limit their growth and productivity. However, conversely, plant growth can also be induced by treatments with various abiotic and biotic elicitors. Carrageenans are sulfated linear polysaccharides that represent major cellular constituents of seaweeds belonging to red algae (Rhodophyta). Recent research has unraveled the biological activity of carrageenans and of their oligomeric forms, the oligo carrageenans (OCs), as promoters of plant growth and as elicitors of defense responses against pests and diseases. In this review, we discuss the molecular mechanisms by which carrageenans and OCs mediate plant growth and plant defense responses. Carrageenans and OCs improve plant growth by regulating various metabolic processes such as photosynthesis and ancillary pathways, cell division, purine and pyrimidine synthetic pathways as well as metabolic pathways involved in nitrogen and sulfur assimilation. Carrageenans and OCs also induce plant defense responses against viroids, viruses, bacteria, fungi and insects by modulating the activity of different defense pathways, including salicylate, jasmonate and ethylene signaling pathways. Further studies will likely substantiate the beneficial effects of carrageenans and of OCs on plant growth and plant defense responses and open new avenues for their use in agriculture and horticultural industry

    Resurrecting immortal‐time bias in the study of readmissions

    Full text link
    ObjectiveTo compare readmission rates as measured by the Centers for Medicare and Medicaid Services and the American College of Surgeons National Surgical Quality Improvement Program (NSQIP) methods.Data Sources20 percent sample of national Medicare data for patients undergoing cystectomy, colectomy, abdominal aortic aneurysm (AAA) repair, and total knee arthroplasty (TKA) between 2010 and 2014.Study DesignRetrospective cohort study comparing 30‐day readmission rates.Data Collection/Extraction MethodsPatients undergoing cystectomy, colectomy, abdominal aortic aneurysm repair, and total knee arthroplasty between 2010 and 2014 were identified.Principal FindingsCystectomy had the highest and total knee arthroplasty had the lowest readmission rate. The NSQIP measure reported significantly lower rates for all procedures compared to the CMS measure, which reflects an immortal‐time bias.ConclusionsWe found significantly different readmission rates across all surgical procedures when comparing CMS and NSQIP measures. Longer length of stay exacerbated these differences. Uniform outcome measures are needed to eliminate ambiguity and synergize research and policy efforts.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154628/1/hesr13252-sup-0001-Authormatrix.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154628/2/hesr13252.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154628/3/hesr13252_am.pd

    Intersubunit ionic interactions stabilize the nucleoside diphosphate kinase of <i>Mycobacterium tuberculosis</i>

    Get PDF
    Most nucleoside diphosphate kinases (NDPKs) are hexamers. The C-terminal tail interacting with the neighboring subunits is crucial for hexamer stability. In the NDPK from Mycobacterium tuberculosis (Mt) this tail is missing. The quaternary structure of Mt-NDPK is essential for full enzymatic activity and for protein stability to thermal and chemical denaturation. We identified the intersubunit salt bridge Arg(80)-Asp(93) as essential for hexamer stability, compensating for the decreased intersubunit contact area. Breaking the salt bridge by the mutation D93N dramatically decreased protein thermal stability. The mutation also decreased stability to denaturation by urea and guanidinium. The D93N mutant was still hexameric and retained full activity. When exposed to low concentrations of urea it dissociated into folded monomers followed by unfolding while dissociation and unfolding of the wild type simultaneously occur at higher urea concentrations. The dissociation step was not observed in guanidine hydrochloride, suggesting that low concentration of salt may stabilize the hexamer. Indeed, guanidinium and many other salts stabilized the hexamer with a half maximum effect of about 0.1 M, increasing protein thermostability. The crystal structure of the D93N mutant has been solved

    Synaptogyrin-2 influences replication of Porcine circovirus 2

    Get PDF
    Porcine circovirus 2 (PCV2) is a circular single-stranded DNA virus responsible for a group of diseases collectively known as PCV2 Associated Diseases (PCVAD). Variation in the incidence and severity of PCVAD exists between pigs suggesting a host genetic component involved in pathogenesis. A large-scale genome-wide association study of experimentally infected pigs (n = 974), provided evidence of a host genetic role in PCV2 viremia, immune response and growth during challenge. Host genotype explained 64% of the phenotypic variation for overall viral load, with two major Quantitative Trait Loci (QTL) identified on chromosome 7 (SSC7) near the swine leukocyte antigen complex class II locus and on the proximal end of chromosome 12 (SSC12). The SNP having the strongest association, ALGA0110477 (SSC12), explained 9.3% of the genetic and 6.2% of the phenotypic variance for viral load. Dissection of the SSC12 QTL based on gene annotation, genomic and RNA-sequencing, suggested that a missense mutation in the SYNGR2 (SYNGR2 p.Arg63Cys) gene is potentially responsible for the variation in viremia. This polymorphism, located within a protein domain conserved across mammals, results in an amino acid variant SYNGR2 p.63Cys only observed in swine. PCV2 titer in PK15 cells decreased when the expression of SYNGR2 was silenced by specific-siRNA, indicating a role of SYNGR2 in viral replication. Additionally, a PK15 edited clone generated by CRISPR-Cas9, carrying a partial deletion of the second exon that harbors a key domain and the SYNGR2 p.Arg63Cys, was associated with a lower viral titer compared to wildtype PK15 cells (\u3e24 hpi) and supernatant (\u3e48hpi)(P \u3c 0.05). Identification of a non-conservative substitution in this key domain of SYNGR2 suggests that the SYNGR2 p.Arg63Cys variant may underlie the observed genetic effect on viral load

    Synaptogyrin-2 influences replication of Porcine circovirus 2

    Get PDF
    Porcine circovirus 2 (PCV2) is a circular single-stranded DNA virus responsible for a group of diseases collectively known as PCV2 Associated Diseases (PCVAD). Variation in the incidence and severity of PCVAD exists between pigs suggesting a host genetic component involved in pathogenesis. A large-scale genome-wide association study of experimentally infected pigs (n = 974), provided evidence of a host genetic role in PCV2 viremia, immune response and growth during challenge. Host genotype explained 64% of the phenotypic variation for overall viral load, with two major Quantitative Trait Loci (QTL) identified on chromosome 7 (SSC7) near the swine leukocyte antigen complex class II locus and on the proximal end of chromosome 12 (SSC12). The SNP having the strongest association, ALGA0110477 (SSC12), explained 9.3% of the genetic and 6.2% of the phenotypic variance for viral load. Dissection of the SSC12 QTL based on gene annotation, genomic and RNA-sequencing, suggested that a missense mutation in the SYNGR2 (SYNGR2 p.Arg63Cys) gene is potentially responsible for the variation in viremia. This polymorphism, located within a protein domain conserved across mammals, results in an amino acid variant SYNGR2 p.63Cys only observed in swine. PCV2 titer in PK15 cells decreased when the expression of SYNGR2 was silenced by specific-siRNA, indicating a role of SYNGR2 in viral replication. Additionally, a PK15 edited clone generated by CRISPR-Cas9, carrying a partial deletion of the second exon that harbors a key domain and the SYNGR2 p.Arg63Cys, was associated with a lower viral titer compared to wildtype PK15 cells (\u3e24 hpi) and supernatant (\u3e48hpi)(P \u3c 0.05). Identification of a non-conservative substitution in this key domain of SYNGR2 suggests that the SYNGR2 p.Arg63Cys variant may underlie the observed genetic effect on viral load
    corecore