133 research outputs found

    Detection of acetone vapours using solution-processed tin oxide thin-film transistors

    Get PDF
    Abnormal concentrations of volatile organic compounds (VOCs) in human breathe can be used as disease-specific biomarkers for the non-invasive diagnosis of medical conditions, such as acetone for diabetes. Solution-processed bottom gate top contact metal oxide thin-film transistors (TFTs) are used to detect acetone vapours, as part of a proof-of-concept study. The effect of increasing annealing temperature (T) and channel length (L) on electrical and sensing performance are explored. Drain current (Ids) increases following exposure as acetone undergoes a redox reaction with the adsorbed oxygen species on the semiconductor surface, which results in free electrons being released back into the conduction band. Responsivity (R) is maximized at negative bias (Vgs < 0). For L = 50 μm, the peak R of the TFT annealed at 450 °C is three times greater than that of the TFT annealed at 350 °C, with Vgs = − 37.5 V and − 33 V, respectively

    Nanostructured Channel for Improving Emission Efficiency of Hybrid Light-Emitting Field-Effect Transistors

    Get PDF
    We report on the mechanism of enhancing the luminance and external quantum efficiency (EQE) by developing nanostructured channels in hybrid (organic/inorganic) light-emitting transistors (HLETs) that combine a solution-processed oxide and a polymer heterostructure. The heterostructure comprised two parts: (i) the zinc tin oxide/zinc oxide (ZTO/ZnO), with and without ZnO nanowires (NWs) grown on the top of the ZTO/ZnO stack, as the charge transport layer and (ii) a polymer Super Yellow (SY, also known as PDY-132) layer as the light-emitting layer. Device characterization shows that using NWs significantly improves luminance and EQE (≈1.1% @ 5000 cd m–2) compared to previously reported similar HLET devices that show EQE < 1%. The size and shape of the NWs were controlled through solution concentration and growth time, which also render NWs to have higher crystallinity. Notably, the size of the NWs was found to provide higher escape efficiency for emitted photons while offering lower contact resistance for charge injection, which resulted in the improved optical performance of HLETs. These results represent a significant step forward in enabling efficient and all-solution-processed HLET technology for lighting and display applications

    Structurally diverse mitochondrial branched chain aminotransferase (BCATm) leads with varying binding modes identified by fragment screening

    Get PDF
    Inhibitors of mitochondrial branched chain aminotransferase (BCATm), identified using fragment screening, are described. This was carried out using a combination of STD-NMR, thermal melt (Tm), and biochemical assays to identify compounds that bound to BCATm, which were subsequently progressed to X-ray crystallography, where a number of exemplars showed significant diversity in their binding modes. The hits identified were supplemented by searching and screening of additional analogues, which enabled the gathering of further X-ray data where the original hits had not produced liganded structures. The fragment hits were optimized using structure-based design, with some transfer of information between series, which enabled the identification of ligand efficient lead molecules with micromolar levels of inhibition, cellular activity, and good solubility

    Is HLA type a possible cancer risk modifier in Lynch syndrome?

    Get PDF
    Lynch syndrome (LS) is the most common inherited cancer syndrome. It is inherited via a monoallelic germline variant in one of the DNA mismatch repair (MMR) genes. LS carriers have a broad 30% to 80% risk of developing various malignancies, and more precise, individual risk estimations would be of high clinical value, allowing tailored cancer prevention and surveillance. Due to MMR deficiency, LS cancers are characterized by the accumulation of frameshift mutations leading to highly immunogenic frameshift peptides (FSPs). Thus, immune surveillance is proposed to inhibit the outgrowth of MMR-deficient cell clones. Recent studies have shown that immunoediting during the evolution of MMR-deficient cancers leads to a counter-selection of highly immunogenic antigens. The immunogenicity of FSPs is dependent on the antigen presentation. One crucial factor determining antigen presentation is the HLA genotype. Hence, a LS carrier's HLA genotype plays an important role in the presentation of FSP antigens to the immune system, and may influence the likelihood of progression from precancerous lesions to cancer. To address the challenge of clarifying this possibility including diverse populations with different HLA types, we have established the INDICATE initiative (Individual cancer risk by HLA type, ), an international network aiming at a systematic evaluation of the HLA genotype as a possible cancer risk modifier in LS. Here we summarize the current knowledge on the role of HLA type in cancer risk and outline future research directions to delineate possible association in the scenario of LS with genetically defined risk population and highly immunogenic tumors.Peer reviewe

    Heparin versus citrate anticoagulation for continuous renal replacement therapy in intensive care: the RRAM observational study.

    Get PDF
    BACKGROUND: In the UK, 10% of admissions to intensive care units receive continuous renal replacement therapy with regional citrate anticoagulation replacing systemic heparin anticoagulation over the last decade. Regional citrate anticoagulation is now used in > 50% of intensive care units, despite little evidence of safety or effectiveness. AIM: The aim of the Renal Replacement Anticoagulant Management study was to evaluate the clinical and health economic impacts of intensive care units moving from systemic heparin anticoagulation to regional citrate anticoagulation for continuous renal replacement therapy. DESIGN: This was an observational comparative effectiveness study. SETTING: The setting was NHS adult general intensive care units in England and Wales. PARTICIPANTS: Participants were adults receiving continuous renal replacement therapy in an intensive care unit participating in the Intensive Care National Audit & Research Centre Case Mix Programme national clinical audit between 1 April 2009 and 31 March 2017. INTERVENTIONS: Exposure - continuous renal replacement therapy in an intensive care unit after completion of transition to regional citrate anticoagulation. Comparator - continuous renal replacement therapy in an intensive care unit before starting transition to regional citrate anticoagulation or had not transitioned. OUTCOME MEASURES: Primary effectiveness - all-cause mortality at 90 days. Primary economic - incremental net monetary benefit at 1 year. Secondary outcomes - mortality at hospital discharge, 30 days and 1 year; days of renal, cardiovascular and advanced respiratory support in intensive care unit; length of stay in intensive care unit and hospital; bleeding and thromboembolic events; prevalence of end-stage renal disease at 1 year; and estimated lifetime incremental net monetary benefit. DATA SOURCES: Individual patient data from the Intensive Care National Audit & Research Centre Case Mix Programme were linked with the UK Renal Registry, Hospital Episode Statistics (for England), Patient Episodes Data for Wales and Civil Registrations (Deaths) data sets, and combined with identified periods of systemic heparin anticoagulation and regional citrate anticoagulation (survey of intensive care units). Staff time and consumables were obtained from micro-costing. Continuous renal replacement therapy system failures were estimated from the Post-Intensive Care Risk-adjusted Alerting and Monitoring data set. EuroQol-3 Dimensions, three-level version, health-related quality of life was obtained from the Intensive Care Outcomes Network study. RESULTS: Out of the 188 (94.9%) units that responded to the survey, 182 (96.8%) use continuous renal replacement therapy. After linkage, data were available from 69,001 patients across 181 intensive care units (60,416 during periods of systemic heparin anticoagulation use and 8585 during regional citrate anticoagulation use). The change to regional citrate anticoagulation was not associated with a step change in 90-day mortality (odds ratio 0.98, 95% confidence interval 0.89 to 1.08). Secondary outcomes showed step increases in days of renal support (difference in means 0.53 days, 95% confidence interval 0.28 to 0.79 days), advanced cardiovascular support (difference in means 0.23 days, 95% confidence interval 0.09 to 0.38 days) and advanced respiratory support (difference in means, 0.53 days, 95% CI 0.03 to 1.03 days) with a trend toward fewer bleeding episodes (odds ratio 0.90, 95% confidence interval 0.76 to 1.06) with transition to regional citrate anticoagulation. The micro-costing study indicated that regional citrate anticoagulation was more expensive and was associated with an estimated incremental net monetary loss (step change) of -£2376 (95% confidence interval -£3841 to -£911). The estimated likelihood of cost-effectiveness at 1 year was less than 0.1%. LIMITATIONS: Lack of patient-level treatment data means that the results represent average effects of changing to regional citrate anticoagulation in intensive care units. Administrative data are subject to variation in data quality over time, which may contribute to observed trends. CONCLUSIONS: The introduction of regional citrate anticoagulation has not improved outcomes for patients and is likely to have substantially increased costs. This study demonstrates the feasibility of evaluating effects of changes in practice using routinely collected data. FUTURE WORK: (1) Prioritise other changes in clinical practice for evaluation and (2) methodological research to understand potential implications of trends in data quality. TRIAL REGISTRATION: This trial is registered as ClinicalTrials.gov NCT03545750. FUNDING: This project was funded by the National Institute for Health Research (NIHR) Health Technology Assessment programme and will be published in full in Health Technology Assessment; Vol. 26, No. 13. See the NIHR Journals Library website for further project information

    The Transient Receptor Potential Ion Channel TRPV6 Is Expressed at Low Levels in Osteoblasts and Has Little Role in Osteoblast Calcium Uptake

    Get PDF
    Background: TRPV6 ion channels are key mediators of regulated transepithelial absorption of Ca2+ within the small intestine. Trpv6-/- mice were reported to have lower bone density than wild-type littermates and significant disturbances in calcium homeostasis that suggested a role for TRPV6 in osteoblasts during bone formation and mineralization. TRPV6 and molecules related to transepithelial Ca2+ transport have been reported to be expressed at high levels in human and mouse osteoblasts. Results: Transmembrane ion currents in whole cell patch clamped SaOS-2 osteoblasts did not show sensitivity to ruthenium red, an inhibitor of TRPV5/6 ion channels, and 45Ca uptake was not significantly affected by ruthenium red in either SaOS-2 (P = 0.77) or TE-85 (P = 0.69) osteoblastic cells. In contrast, ion currents and 45Ca uptake were both significantly affected in a human bronchial epithelial cell line known to express TRPV6. TRPV6 was expressed at lower levels in osteoblastic cells than has been reported in some literature. In SaOS-2 TRPV6 mRNA was below the assay detection limit; in TE-85 TRPV6 mRNA was detected at 6.90±1.9 × 10−5 relative to B2M. In contrast, TRPV6 was detected at 7.7±3.0 × 10−2 and 2.38±0.28 × 10−4 the level of B2M in human carcinoma-derived cell lines LNCaP and CaCO-2 respectively. In murine primary calvarial osteoblasts TRPV6 was detected at 3.80±0.24 × 10−5 relative to GAPDH, in contrast with 4.3±1.5 × 10−2 relative to GAPDH in murine duodenum. By immunohistochemistry, TRPV6 was expressed mainly in myleocytic cells of the murine bone marrow and was observed only at low levels in murine osteoblasts, osteocytes or growth plate cartilage. Conclusions: TRPV6 is expressed only at low levels in osteoblasts and plays little functional role in osteoblastic calcium uptake

    Translational pharmacology of an inhaled small molecule αvβ6 integrin inhibitor for idiopathic pulmonary fibrosis

    Get PDF
    The αvβ6 integrin plays a key role in the activation of transforming growth factor-β (TGFβ), a pro-fibrotic mediator that is pivotal to the development of idiopathic pulmonary fibrosis (IPF). We identified a selective small molecule αvβ6 RGD-mimetic, GSK3008348, and profiled it in a range of disease relevant pre-clinical systems. To understand the relationship between target engagement and inhibition of fibrosis, we measured pharmacodynamic and diseaserelated end points. Here we report, GSK3008348 binds to αvβ6 with high affinity in human IPF lung and reduces downstream pro-fibrotic TGFβ signaling to normal levels. In human lung epithelial cells, GSK3008348 induces rapid internalization and lysosomal degradation of the αvβ6 integrin. In the murine bleomycin-induced lung fibrosis model, GSK3008348 engages αvβ6, induces prolonged inhibition of TGFβ signaling and reduces lung collagen deposition and serum C3M, a marker of IPF disease progression. These studies highlight the potential of inhaled GSK3008348 as an anti-fibrotic therapy

    Paeonol Oxime Inhibits bFGF-Induced Angiogenesis and Reduces VEGF Levels in Fibrosarcoma Cells

    Get PDF
    Background: We previously reported the anti-angiogenic activity of paeonol isolated from Moutan Cortex. In the present study, we investigated the negative effect of paeonol oxime (PO, a paeonol derivative) on basic fibroblast growth factor (bFGF)-mediated angiogenesis in human umbilical vein endothelial cells (HUVECs) (including tumor angiogenesis) and pro-survival activity in HT-1080 fibrosarcoma cell line. Methodology/Principal Findings: We showed that PO (IC50  = 17.3 µg/ml) significantly inhibited bFGF-induced cell proliferation, which was achieved with higher concentrations of paeonol (IC50 over 200 µg). The treatment with PO blocked bFGF-stimulated migration and in vitro capillary differentiation (tube formation) in a dose-dependent manner. Furthermore, PO was able to disrupt neovascularization in vivo. Interestingly, PO (25 µg/ml) decreased the cell viability of HT-1080 fibrosarcoma cells but not that of HUVECs. The treatment with PO at 12.5 µg/ml reduced the levels of phosphorylated AKT and VEGF expression (intracellular and extracelluar) in HT-1080 cells. Consistently, immunefluorescence imaging analysis revealed that PO treatment attenuated AKT phosphorylation in HT-1080 cells. Conclusions/Significance: Taken together, these results suggest that PO inhibits bFGF-induced angiogenesis in HUVECs and decreased the levels of PI3K, phospho-AKT and VEGF in HT-1080 cells

    Regulation of human endometrial function: mechanisms relevant to uterine bleeding

    Get PDF
    This review focuses on the complex events that occur in the endometrium after progesterone is withdrawn (or blocked) and menstrual bleeding ensues. A detailed understanding of these local mechanisms will enhance our knowledge of disturbed endometrial/uterine function – including problems with excessively heavy menstrual bleeding, endometriosis and breakthrough bleeding with progestin only contraception. The development of novel strategies to manage these clinically significant problems depends on such new understanding as does the development of new contraceptives which avoid the endometrial side effect of breakthrough bleeding
    corecore