2 research outputs found

    Detecting aquatic and terrestrial biodiversity in a tropical estuary using environmental DNA

    No full text
    Estuaries are characterized by a tidal regime and are strongly influenced by hydrodynamics and host diverse and highly dynamic habitats, from fresh, brackish, or saltwater to terrestrial, whose biodiversity is especially difficult to monitor. Here, we investigated the potential of environmental DNA (eDNA) metabarcoding, with three primer sets targeting different regions of the mitochondrial DNA 12S ribosomal RNA gene, to detect vertebrate diversity in the estuary of the Don Diego River in Colombia. With eDNA, we detected not only aquatic organisms, including fishes, amphibians, and reptiles, but also a large diversity of terrestrial, arboreal, and flying vertebrates, including mammals and birds, living in the estuary surroundings. Further, the eDNA signal remained relatively localized along the watercourse. A transect from the deep outer section of the estuary, across the river mouth toward the inner section of the river, showed marked taxonomic turnover from typical marine to freshwater fishes, while eDNA of terrestrial and arboreal species was mainly found in the inner section of the estuary. Our results indicate that eDNA enables the detection of a large diversity of vertebrates and could become an important tool for biodiversity monitoring in estuaries, where water integrates information across the ecosystem. Abstract in Spanish is available with online material

    How many replicates to accurately estimate fish biodiversity using environmental DNA on coral reefs?

    No full text
    Quantifying fish species diversity in rich tropical marine environments remains challenging. Environmental DNA (eDNA) metabarcoding is a promising tool to face this challenge through the filtering, amplification, and sequencing of DNA traces from water samples. However, because eDNA concentration is low in marine environments, the reliability of eDNA to detect species diversity can be limited. Using an eDNA metabarcoding approach to identify fish Molecular Taxonomic Units (MOTUs) with a single 12S marker, we aimed to assess how the number of sampling replicates and filtered water volume affect biodiversity estimates. We used a paired sampling design of 30 L per replicate on 68 reef transects from 8 sites in 3 tropical regions. We quantified local and regional sampling variability by comparing MOTU richness, compositional turnover, and compositional nestedness. We found strong turnover of MOTUs between replicated pairs of samples undertaken in the same location, time, and conditions. Paired samples contained non-overlapping assemblages rather than subsets of one another. As a result, non-saturated localized diversity accumulation curves suggest that even 6 replicates (180 L) in the same location can underestimate local diversity (for an area <1 km). However, sampling regional diversity using ~25 replicates in variable locations (often covering 10 s of km) often saturated biodiversity accumulation curves. Our results demonstrate variability of diversity estimates possibly arising from heterogeneous distribution of eDNA in seawater, highly skewed frequencies of eDNA traces per MOTU, in addition to variability in eDNA processing. This high compositional variability has consequences for using eDNA to monitor temporal and spatial biodiversity changes in local assemblages. Avoiding false-negative detections in future biomonitoring efforts requires increasing replicates or sampled water volume to better inform management of marine biodiversity using eDNA
    corecore