29 research outputs found

    Passive immunotherapy for N-truncated tau ameliorates the cognitive deficits in two mouse AD models

    Get PDF
    Clinical and neuropathological studies have shown that tau pathology better correlates with the severity of dementia than amyloid plaque burden, making tau an attractive target for the cure of Alzheimer\u2019s disease. We have explored whether passive immunization with the 12A12 monoclonal antibody (26\u201336aa of tau protein) could improve the Alzheimer\u2019s disease phenotype of two well-established mouse models, Tg2576 and 3xTg mice. 12A12 is a cleavage-specific monoclonal antibody which selectively binds the pathologically relevant neurotoxic NH226-230 fragment (i.e. NH2htau) of tau protein without cross-reacting with its full-length physiological form(s). We found out that intravenous administration of 12A12 monoclonal antibody into symptomatic (6 months old) animals: (i) reaches the hippocampus in its biologically active (antigen-binding competent) form and successfully neutralizes its target; (ii) reduces both pathological tau and amyloid precursor protein/amyloid\u3b2 metabolisms involved in early disease-associated synaptic deterioration; (iii) improves episodic-like type of learning/memory skills in hippocampal-based novel object recognition and object place recognition behavioural tasks; (iv) restores the specific up-regulation of the activity-regulated cytoskeleton-associated protein involved in consolidation of experience-dependent synaptic plasticity; (v) relieves the loss of dendritic spine connectivity in pyramidal hippocampal CA1 neurons; (vi) rescues the Alzheimer\u2019s disease-related electrophysiological deficits in hippocampal long-term potentiation at the CA3-CA1 synapses; and (vii) mitigates the neuroinflammatory response (reactive gliosis). These findings indicate that the 20\u201322 kDa NH2-terminal tau fragment is crucial target for Alzheimer\u2019s disease therapy and prospect immunotherapy with 12A12 monoclonal antibody as safe (normal tau-preserving), beneficial approach in contrasting the early Amyloid\u3b2-dependent and independent neuropathological and cognitive alterations in affected subject

    Laparoscopic right hemicolectomy: a SICE (Società Italiana di Chirurgia Endoscopica e Nuove tecnologie) network prospective study on the approach to right colon lymphadenectomy in Italy: is there a standard?—CoDIG 2 (ColonDx Italian Group)

    Get PDF
    Background: Colon cancer is a disease with a worldwide spread. Surgery is the best option for the treatment of advanced colon cancer, but some aspects are still debated, such as the extent of lymphadenectomy. In Japanese guidelines, the gold standard was D3 dissection to remove the central lymph nodes (203, 213, and 223), but in 2009, Hoenberger et al. introduced the concept of complete mesocolic excision, in which surgical dissection follows the embryological planes to remove the mesentery entirely to prevent leakage of cancer cells and collect more lymph nodes. Our study describes how lymphadenectomy is currently performed in major Italian centers with an unclear indication on the type of lymphadenectomy that should be performed during right hemicolectomy (RH). Methods: CoDIG 2 is an observational multicenter national study that involves 76 Italian general surgery wards highly specialized in colorectal surgery. Each center was asked not to modify their usual surgical and clinical practices. The aim of the study was to assess the preference of Italian surgeons on the type of lymphadenectomy to perform during RH and the rise of any new trends or modifications in habits compared to the findings of the CoDIG 1 study conducted 4 years ago. Results: A total of 788 patients were enrolled. The most commonly used surgical technique was laparoscopic (82.1%) with intracorporeal (73.4%), side-to-side (98.7%), or isoperistaltic (96.0%) anastomosis. The lymph nodes at the origin of the vessels were harvested in an inferior number of cases (203, 213, and 223: 42.4%, 31.1%, and 20.3%, respectively). A comparison between CoDIG 1 and CoDIG 2 showed a stable trend in surgical techniques and complications, with an increase in the robotic approach (7.7% vs. 12.3%). Conclusions: This analysis shows how lymphadenectomy is performed in Italy to achieve oncological outcomes in RH, although the technique to achieve a higher lymph node count has not yet been standardized. Trial registration (ClinicalTrials.gov) ID: NCT05943951

    The hnRNP family: insights into their role in health and disease

    Get PDF
    Heterogeneous nuclear ribonucleoproteins (hnRNPs) represent a large family of RNA-binding proteins (RBPs) that contribute to multiple aspects of nucleic acid metabolism including alternative splicing, mRNA stabilization, and transcriptional and translational regulation. Many hnRNPs share general features, but differ in domain composition and functional properties. This review will discuss the current knowledge about the different hnRNP family members, focusing on their structural and functional divergence. Additionally, we will highlight their involvement in neurodegenerative diseases and cancer, and the potential to develop RNA-based therapies

    Correction to: MicroRNA-34 contributes to the stress-related behavior and affects 5-HT prefrontal/GABA amygdalar system through regulation of corticotropin-releasing factor receptor 1

    No full text
    The original version of this article unfortunately contained a mistake in Figure 3. The drawing superimposed on photomicrographs to identify the region of Dorsal raphè Nuclei was inappropriately positioned. The corrected figure is given below

    MicroRNA-34 Contributes to the Stress-related Behavior and Affects 5-HT Prefrontal/GABA Amygdalar System through Regulation of Corticotropin-releasing Factor Receptor 1

    No full text
    Recent studies show that microRNA-34 (miR-34) family is critical in the regulation of stress response also suggesting that it may contribute to the individual responsiveness to stress.We have recently demonstrated that mice carrying a genetic deletion of allmiR- 34 isoforms (triple knockout, TKO) lack the stress-induced serotonin (5-HT) and GABA release in the medial prefrontal cortex (mpFC) and basolateral amygdala (BLA), respectively. Here, we evaluated if the absence of miR-34 was also able to modify the stress-coping strategy in the forced swimming test.We found that the blunted neurochemical response to stress was associated with lower levels of immobility (index of active coping behavior) in TKO compared toWT mice. Interestingly, among the brain regions mostly involved in the stress-related behaviors, the miR-34 displayed the strongest expression in the dorsal raphe nuclei (DRN) of wild-type (WT) mice. In the DRN, the corticotropin-releasing factor receptors (CRFR) 1 and 2, contribute to determine the stresscoping style and the CRFR1 is a target of miR-34. Thus, we hypothesized that the miR-34-dependent modulation of CRFR1 expression may be involved in the DRN regulation of stress-coping strategies. In line with this hypothesis, we found increased CRFR1 levels in the DNR of TKO compared to WT mice. Moreover, infusion of CRFR1 antagonist in the DRN of TKO mice reverted their behavioral and neurochemical phenotype.We propose that miR-34 modulate the mpFC 5-HT/BLA GABA response to stress acting on CRFR1 in the DRN and that this mechanism could contribute to determine individual stress-coping strateg

    Ribosomal RACK1 Regulates the Dendritic Arborization by Repressing FMRP Activity

    Get PDF
    FMRP is an RNA-binding protein that represses the translation of specific mRNAs. In neurons, its depletion determines the exaggerated translation of mRNAs leading to dendritic and axonal aberrant development, two peculiar features of Fragile X syndrome patients. However, how FMRP binds to translational machinery to regulate the translation of its mRNA targets is not yet fully understood. Here, we show that FMRP localizes on translational machinery by interacting with the ribosomal binding protein, Receptor for Activated C Kinase 1 (RACK1). The binding of FMRP to RACK1 removes the translational repressive activity of FMRP and promotes the translation of PSD-95 mRNA, one specific target of FMRP. This binding also results in a reduction in the level of FMRP phosphorylation. We also find that the morphological abnormalities induced by Fmr1 siRNA in cortical neurons are rescued by the overexpression of a mutant form of RACK1 that cannot bind ribosomes. Thus, these results provide a new mechanism underlying FMRP activity that contributes to altered development in FXS. Moreover, these data confirm the role of ribosomal RACK1 as a ribosomal scaffold for RNA binding proteins
    corecore