41 research outputs found

    Improvement of radiopurity level of enriched 116^{116}CdWO4_4 and ZnWO4_4 crystal scintillators by recrystallization

    Get PDF
    As low as possible radioactive contamination of a detector plays a crucial role to improve sensitivity of a double beta decay experiment. The radioactive contamination of a sample of 116^{116}CdWO4_4 crystal scintillator by thorium was reduced by a factor ≈10\approx 10, down to the level 0.01 mBq/kg (228^{228}Th), by exploiting the recrystallization procedure. The total alpha activity of uranium and thorium daughters was reduced by a factor ≈3\approx 3, down to 1.6 mBq/kg. No change in the specific activity (the total α\alpha activity and 228^{228}Th) was observed in a sample of ZnWO4_4 crystal produced by recrystallization after removing ≈0.4\approx 0.4 mm surface layer of the crystal.Comment: 14 pages, 5 figures and 2 table

    Li2_2100depl^{100\textrm{depl}}MoO4_4 Scintillating Bolometers for Rare-Event Search Experiments

    Full text link
    We report on the development of scintillating bolometers based on lithium molybdate crystals containing molybdenum depleted in the double-β\beta active isotope 100^{100}Mo (Li2_2100depl^{100\textrm{depl}}MoO4_4). We used two Li2_2100depl^{100\textrm{depl}}MoO4_4 cubic samples, 45 mm side and 0.28 kg each, produced following purification and crystallization protocols developed for double-β\beta search experiments with 100^{100}Mo-enriched Li2_2MoO4_4 crystals. Bolometric Ge detectors were utilized to register scintillation photons emitted by the Li2_2100depl^{100\textrm{depl}}MoO4_4 crystal scintillators. The measurements were performed in the CROSS cryogenic set-up at the Canfranc underground laboratory (Spain). We observed that the Li2_2100depl^{100\textrm{depl}}MoO4_4 scintillating bolometers are characterized by excellent spectrometric performance (∼\sim3--6 keV FWHM at 0.24--2.6 MeV γ\gamma's), moderate scintillation signal (∼\sim0.3--0.6 keV/MeV depending on light collection conditions) and high radiopurity (228^{228}Th and 226^{226}Ra activities are below a few μ\muBq/kg), comparable to the best reported results of low-temperature detectors based on Li2_2MoO4_4 with natural or 100^{100}Mo-enriched molybdenum content. Prospects of Li2_2100depl^{100\textrm{depl}}MoO4_4 bolometers for use in rare-event search experiments are briefly discussed.Comment: Prepared for submission to MDPI Sensors; 16 pages, 7 figures, and 3 table

    Final results on the 0νββ decay half-life limit of 100^{100} Mo from the CUPID-Mo experiment

    Get PDF
    The CUPID-Mo experiment to search for 0νββ decay in 100^{100}Mo has been recently completed after about 1.5 years of operation at Laboratoire Souterrain de Modane (France). It served as a demonstrator for CUPID, a next generation 0νββ decay experiment. CUPID-Mo was comprised of 20 enriched Li2100_2^{100}MoO4_4 scintillating calorimeters, each with a mass of ∼0.2 kg, operated at ∼20 mK. We present here the final analysis with the full exposure of CUPID-Mo (100^{100}Mo exposure of 1.47 kg×year) used to search for lepton number violation via 0νββ decay. We report on various analysis improvements since the previous result on a subset of data, reprocessing all data with these new techniques. We observe zero events in the region of interest and set a new limit on the 100^{100}Mo 0νββ decay half-life of T1/20ν^{0ν}_{1/2} >1.8×1024^{24} year (stat. + syst.) at 90% CI. Under the light Majorana neutrino exchange mechanism this corresponds to an effective Majorana neutrino mass of ⟨mββ_{ββ}⟩ < (0.28−0.49) eV, dependent upon the nuclear matrix element utilized

    The background model of the CUPID-Mo 0νββ0\nu\beta\beta experiment

    Full text link
    CUPID-Mo, located in the Laboratoire Souterrain de Modane (France), was a demonstrator for the next generation 0νββ0\nu\beta\beta decay experiment, CUPID. It consisted of an array of 20 enriched Li2_{2}100 ^{100}MoO4_4 bolometers and 20 Ge light detectors and has demonstrated that the technology of scintillating bolometers with particle identification capabilities is mature. Furthermore, CUPID-Mo can inform and validate the background prediction for CUPID. In this paper, we present a detailed model of the CUPID-Mo backgrounds. This model is able to describe well the features of the experimental data and enables studies of the 2νββ2\nu\beta\beta decay and other processes with high precision. We also measure the radio-purity of the Li2_{2}100^{100}MoO4_4 crystals which are found to be sufficient for the CUPID goals. Finally, we also obtain a background index in the region of interest of 3.7−0.8+0.9^{+0.9}_{-0.8}(stat)−0.7+1.5^{+1.5}_{-0.7}(syst)×10−3\times10^{-3}counts/Δ\DeltaEFWHM_{FWHM}/moliso_{iso}/yr, the lowest in a bolometric 0νββ0\nu\beta\beta decay experiment

    Regioselectivity of Arylation of 2,3’-Biquinolyl Dianion

    No full text
    The dianion of 2,3’-biquinolyl with aryl- and hetaryl halides forms the products of arylation to 4’-position, which on treatment with alkyl halides or water yield 1’-alkyl-1’,4’dihydro-2,3’-biquinolyls or 4’-aryl-1’,4’-dihydro-2,3’-biquinolyls respectively. The oxidation of the latter leads to 4’-aryl-2,3’-biquinolyls. The cation dependence of the arylation is shown
    corecore