387 research outputs found

    PCV4 META-ANALYSIS OF THE DIAGNOSTIC ACCURACY OF PRESSURE MEASUREMENTS IN CORONARY ARTERY DISEASE

    Get PDF

    VV6 TRANSFORMING THE UNIFIED PARKINSON'S DISEASE RATING SCALE INTO A UTILITY SCALE

    Get PDF

    Final Results from phase II of the Mainz Neutrino Mass Search in Tritium ÎČ\beta Decay

    Full text link
    The paper reports on the improved Mainz experiment on tritum ÎČ\beta spectroscopy which yields a 10 times' higher signal to background ratio than before. The main experimental effects and systematic uncertainties have been investigated in side experiments and possible error sources have been eliminated. Extensive data taking took place in the years 1997 to 2001. A residual analysis of the data sets yields for the square of the electron antineutrino mass the final result of m2(Îœe)=(−0.6±2.2stat±2.1syst)m^2(\nu_e)=(-0.6 \pm 2.2_{\rm{stat}} \pm 2.1_{\rm{syst}}) eV2^2/c4^4. We derive an upper limit of m(Îœe)≀2.3m(\nu_e)\leq 2.3 eV/c2^2 at 95% confidence level for the mass itself.Comment: 22 pages, 22 figures submitted to EPJ

    Monitoring of tritium purity during long-term circulation in the KATRIN test experiment LOOPINO using laser Raman spectroscopy

    Full text link
    The gas circulation loop LOOPINO has been set up and commissioned at Tritium Laboratory Karlsruhe (TLK) to perform Raman measurements of circulating tritium mixtures under conditions similar to the inner loop system of the neutrino-mass experiment KATRIN, which is currently under construction. A custom-made interface is used to connect the tritium containing measurement cell, located inside a glove box, with the Raman setup standing on the outside. A tritium sample (purity > 95%, 20 kPa total pressure) was circulated in LOOPINO for more than three weeks with a total throughput of 770 g of tritium. Compositional changes in the sample and the formation of tritiated and deuterated methanes CT_(4-n)X_n (X=H,D; n=0,1) were observed. Both effects are caused by hydrogen isotope exchange reactions and gas-wall interactions, due to tritium {\beta} decay. A precision of 0.1% was achieved for the monitoring of the T_2 Q_1-branch, which fulfills the requirements for the KATRIN experiment and demonstrates the feasibility of high-precision Raman measurements with tritium inside a glove box

    Accurate reference gas mixtures containing tritiated molecules: Their production and raman‐based analysis

    Get PDF
    Highly accurate, quantitative analyses of mixtures of hydrogen isotopologues—both the stable species, H2_{2}, D2_{2}2, and HD, and the radioactive species, T2_{2}, HT, and DT—are of great importance in fields as diverse as deuterium–tritium fusion, neutrino mass measurements using tritium ÎČ-decay, or for photonuclear experiments in which hydrogen–deuterium targets are used. In this publication we describe a production, handling, and analysis facility capable of fabricating well-defined gas samples, which may contain any of the stable and radioactive hydrogen isotopologues, with sub-percent accuracy for the relative species concentrations. The production is based on precise manometric gas mixing of H2_{2}, D2_{2}, and T2_{2}. The heteronuclear isotopologues HD, HT, and DT are generated via controlled, in-line catalytic reaction or by ÎČ-induced self-equilibration, respectively. The analysis was carried out using an in-line intensity- and wavelength-calibrated Raman spectroscopy system. This allows for continuous monitoring of the composition of the circulating gas during the self-equilibration or catalytic evolution phases. During all procedures, effects, such as exchange reactions with wall materials, were considered with care. Together with measurement statistics, these and other systematic effects were included in the determination of composition uncertainties of the generated reference gas samples. Measurement and calibration accuracy at the level of 1% was achieved

    Neutral tritium gas reduction in the KATRIN differential pumping sections

    Get PDF
    The KArlsruhe TRItium Neutrino experiment (KATRIN) aims to measure the effective electron anti-neutrino mass with an unprecedented sensitivity of 0.2 eV/c20.2\,\mathrm{eV}/\mathrm{c}^2, using ÎČ\beta-electrons from tritium decay. The electrons are guided magnetically by a system of superconducting magnets through a vacuum beamline from the windowless gaseous tritium source through differential and cryogenic pumping sections to a high resolution spectrometer and a segmented silicon pin detector. At the same time tritium gas has to be prevented from entering the spectrometer. Therefore, the pumping sections have to reduce the tritium flow by more than 14 orders of magnitude. This paper describes the measurement of the reduction factor of the differential pumping section performed with high purity tritium gas during the first measurement campaigns of the KATRIN experiment. The reduction factor results are compared with previously performed simulations, as well as the stringent requirements of the KATRIN experiment.Comment: 19 pages, 4 figures, submitted to Vacuu

    Characterization of the KATRIN cryogenic pumping section

    Get PDF
    The KArlsruhe TRItium Neutrino (KATRIN) experiment aims to determine the effective anti-electron neutrino mass with a sensitivity of 0.2 eV/c2^2 by using the kinematics of tritium ÎČ\beta-decay. It is crucial to have a high signal rate which is achieved by a windowless gaseous tritium source producing 1011^{11} ÎČ\beta-electrons per second. These are guided adiabatically to the spectrometer section where their energy is analyzed. In order to maintain a low background rate below 0.01 cps, one essential criteria is to permanently reduce the flow of neutral tritium molecules between the source and the spectrometer section by at least 14 orders of magnitude. A differential pumping section downstream from the source reduces the tritium flow by seven orders of magnitude, while at least another factor of 107^7 is achieved by the cryogenic pumping section where tritium molecules are adsorbed on an approximately 3 K cold argon frost layer. In this paper, the results of the cryogenic pumping section commissioning measurements using deuterium are discussed. The cryogenic pumping section surpasses the requirement for the flow reduction of 107^7 by more than one order of magnitude. These results verify the predictions of previously published simulations
    • 

    corecore