91 research outputs found
Degradation of Serotonin N-Acetyltransferase, a Circadian Regulator, by the N-end Rule Pathway
Serotonin N-acetyltransferase (AANAT) converts serotonin to N-acetylserotonin (NAS), a distinct biological regulator and the immediate precursor of melatonin, a circulating hormone that influences circadian processes, including sleep. N-terminal sequences of AANAT enzymes vary among vertebrates. Mechanisms that regulate the levels of AANAT are incompletely understood. Previous findings were consistent with the possibility that AANAT may be controlled through its degradation by the N-end rule pathway. By expressing the rat and human AANATs and their mutants not only in mammalian cells but also in the yeast Saccharomyces cerevisiae, and by taking advantage of yeast genetics, we show here that two complementary forms of rat AANAT are targeted for degradation by two complementary branches of the N-end rule pathway. Specifically, the N-terminally acetylated (Nt-acetylated) Ac-AANAT is destroyed through the recognition of its Nt-acetylated N-terminal Met residue by the Ac/N-end rule pathway, whereas the non-Nt-acetylated AANAT is targeted by the Arg/N-end rule pathway, which recognizes the unacetylated N-terminal Met-Leu sequence of rat AANAT. We also show, by constructing lysine-to-arginine mutants of rat AANAT, that its degradation is mediated by polyubiquitylation of its Lys residue(s). Human AANAT, whose N-terminal sequence differs from that of rodent AANATs, is longer-lived than its rat counterpart and appears to be refractory to degradation by the N-end rule pathway. Together, these and related results indicate both a major involvement of the N-end rule pathway in the control of rodent AANATs and substantial differences in the regulation of rodent and human AANATs that stem from differences in their N-terminal sequences.1141Ysciescopu
A single nucleotide substitution in TaHKT1;5-D controls shoot Na+ accumulation in bread wheat
Improving salinity tolerance in the most widely cultivated cereal, bread wheat (Triticum aestivum L.), is essential to increase grain yields on saline agricultural lands. A Portuguese landrace, Mocho de Espiga Branca accumulates up to sixfold greater leaf and sheath sodium (Na+) than two Australian cultivars, Gladius and Scout, under salt stress in hydroponics. Despite high leaf and sheath Na+ concentrations, Mocho de Espiga Branca maintained similar salinity tolerance compared to Gladius and Scout. A naturally occurring single nucleotide substitution was identified in the gene encoding a major Na+ transporter TaHKT1;5-D in Mocho de Espiga Branca, which resulted in a L190P amino acid residue variation. This variant prevents Mocho de Espiga Branca from retrieving Na+ from the root xylem leading to a high shoot Na+ concentration. The identification of the tissue-tolerant Mocho de Espiga Branca will accelerate the development of more elite salt-tolerant bread wheat cultivars
Differential gene expression profile reveals deregulation of pregnancy specific β1 glycoprotein 9 early during colorectal carcinogenesis
BACKGROUND: APC (Adenomatous polyposis coli) plays an important role in the pathogenesis of both familial and sporadic colorectal cancer. Patients carrying germline APC mutations develop multiple colonic adenomas at younger age and higher frequency than non-carrier cases which indicates that silencing of one APC allele may be sufficient to initiate the transformation process. METHODS: To elucidate the biological dysregulation underlying adenoma formation we examined global gene expression profiles of adenomas and corresponding normal mucosa from an FAP patient. Differential expression of the most significant gene identified in this study was further validated by mRNA in situ hybridization, reverse transcriptase PCR and Northern blotting in different sets of adenomas, tumours and cancer cell lines. RESULTS: Eighty four genes were differentially expressed between all adenomas and corresponding normal mucosa, while only seven genes showed differential expression within the adenomas. The first group included pregnancy specific β-1 glycoprotein 9 (PSG9) (p < 0.006). PSG9 is a member of the carcinoembryonic antigen (CEA)/PSG family and is produced at high levels during pregnancy, mainly by syncytiotrophoblasts. Further analysis of sporadic and familial colorectal cancer confirmed that PSG9 is ectopically upregulated in vivo by cancer cells. In total, deregulation of PSG9 mRNA was detected in 78% (14/18) of FAP adenomas and 75% (45/60) of sporadic colorectal cancer cases tested. CONCLUSION: Detection of PSG9 expression in adenomas, and at higher levels in FAP cases, indicates that germline APC mutations and defects in Wnt signalling modulate PSG9 expression. Since PSG9 is not found in the non-pregnant adult except in association with cancer, and it appears to be an early molecular event associated with colorectal cancer monitoring of its expression may be useful as a biomarker for the early detection of this disease
Meditation-induced near-death experiences: a 3-year longitudinal study
Near-death experiences (NDEs) are life transformational events that are increasingly being subjected to empirical research. However, to date, no study has investigated the phenomenon of a meditation-induced near-death experience (MI-NDE) that is referred to in ancient Buddhist texts. Given that some advanced Buddhist meditators can induce NDEs at a pre-planned point in time, the MI-NDE may make NDEs more empirically accessible and thus advance understanding into the psychology of death-related processes. The present study recruited 12 advanced Buddhist meditators and compared the MI-NDE against two other meditation practices (i.e. that acted as control conditions) in the same participant group. Changes in the content and profundity of the MI-NDE were assessed longitudinally over a 3-year period. Findings demonstrated that compared to the control conditions, the MI-NDE prompted significantly greater pre-post increases in NDE profundity, mystical experiences and non-attachment. Furthermore, participants demonstrated significant increases in NDE profundity across the 3-year study period. Findings from an embedded qualitative analysis (using grounded theory) demonstrated that participants (i) were consciously aware of experiencing NDEs, (ii) retained volitional control over the content and duration of NDEs and (iii) elicited a rich array of non-worldly encounters and spiritual experiences. In addition to providing corroborating evidence in terms of the content of a “regular” (i.e. non-meditation-induced) NDE, novel NDE features identified in the present study indicate that there exist unexplored and/or poorly understood dimensions to NDEs. Furthermore, the study indicates that it would be feasible - including ethically feasible - for future research to recruit advanced meditators in order to assess real-time changes in neurological activity during NDEs
Glia-Pinealocyte Network: The Paracrine Modulation of Melatonin Synthesis by Tumor Necrosis Factor (TNF)
The pineal gland, a circumventricular organ, plays an integrative role in defense responses. The injury-induced suppression of the pineal gland hormone, melatonin, which is triggered by darkness, allows the mounting of innate immune responses. We have previously shown that cultured pineal glands, which express toll-like receptor 4 (TLR4) and tumor necrosis factor receptor 1 (TNFR1), produce TNF when challenged with lipopolysaccharide (LPS). Here our aim was to evaluate which cells present in the pineal gland, astrocytes, microglia or pinealocytes produced TNF, in order to understand the interaction between pineal activity, melatonin production and immune function. Cultured pineal glands or pinealocytes were stimulated with LPS. TNF content was measured using an enzyme-linked immunosorbent assay. TLR4 and TNFR1 expression were analyzed by confocal microscopy. Microglial morphology was analyzed by immunohistochemistry. In the present study, we show that although the main cell types of the pineal gland (pinealocytes, astrocytes and microglia) express TLR4, the production of TNF induced by LPS is mediated by microglia. This effect is due to activation of the nuclear factor kappa B (NF-kB) pathway. In addition, we observed that LPS activates microglia and modulates the expression of TNFR1 in pinealocytes. As TNF has been shown to amplify and prolong inflammatory responses, its production by pineal microglia suggests a glia-pinealocyte network that regulates melatonin output. The current study demonstrates the molecular and cellular basis for understanding how melatonin synthesis is regulated during an innate immune response, thus our results reinforce the role of the pineal gland as sensor of immune status
Neurochemical and Behavioral Characteristics of Toxic Milk Mice: An Animal Model of Wilson’s Disease
Developments in cell biology for quantitative immunoelectron microscopy based on thin sections: a review
Quantitative immunoelectron microscopy uses ultrathin sections and gold particle labelling to determine distributions of molecules across cell compartments. Here, we review a portfolio of new methods for comparing labelling distributions between different compartments in one study group (method 1) and between the same compartments in two or more groups (method 2). Specimen samples are selected unbiasedly and then observed and expected distributions of gold particles are estimated and compared by appropriate statistical procedures. The methods can be used to analyse gold label distributed between volume-occupying (organelle) and surface-occupying (membrane) compartments, but in method 1, membranes must be treated as organelles. With method 1, gold counts are combined with stereological estimators of compartment size to determine labelling density (LD). For volume-occupiers, LD can be expressed simply as golds per test point and, for surface-occupiers, as golds per test line intersection. Expected distributions are generated by randomly assigning gold particles to compartments and expressing observed/expected counts as a relative labelling index (RLI). Preferentially-labelled compartments are identified from their RLI values and by Chi-squared analysis of observed and expected distributions. For method 2, the raw gold particle counts distributed between compartments are simply compared across groups by contingency table and Chi-squared analysis. This identifies the main compartments responsible for the differences between group distributions. Finally, we discuss labelling efficiency (the number of gold particles per target molecule) and describe how it can be estimated for volume- or surface-occupiers by combining stereological data with biochemical determinations
Contribution of Microbe-Mediated Processes in Nitrogen Cycle to Attain Environmental Equilibrium
Nitrogen (N), the most important element, is required by all living organisms for
the synthesis of complex organic molecules like amino acids, proteins, lipids etc.
Nitrogen cycle is considered to be the most complex yet arguably important cycle
next to carbon cycle. Nitrogen cycle includes oxic and anoxic reactions like
organic N mineralization, ammonia assimilation, nitrification denitrification,
anaerobic ammonium oxidation (anammox), dissimilatory nitrate reduction to
ammonium (DNRA), comammox, codenitrification etc. Nitrogen cycling is one
of the most crucial processes required for the recycling of essential chemical
requirements on the planet. Soil microorganisms not only improve N-cycle
balance but also pave the way for sustainable agricultural practices, leading to
improved soil properties and crop productivity as most plants are opportunistic in
the uptake of soluble or available forms of N from soil. Microbial N
transformations are influenced by plants to improve their nutrition and vice
versa. Diverse microorganisms, versatile metabolic activities, and varied biotic and abiotic conditions may result in the shift in the equilibrium state of different
N-cycling processes. This chapter is an overview of the mechanisms and genes
involved in the diverse microorganisms associated in the operation of nitrogen
cycle and the roles of such microorganisms in different agroecosystems
- …