82 research outputs found

    A hydrogel system based on a lactose-modified chitosan for viscosupplementation in osteoarthritis

    Get PDF
    Osteoarthritis (OA) is a chronic disease affecting joint functionality and often managed with hyaluronic acid (HA) administration. In this study, a hydrogel based on a lactose-modified chitosan (CTL) reticulated with boric acid has been developed as a viscosupplement for OA treatment. The rheological characterization allowed to identify a composition whose properties were in line with those of commercial products (in the order of tens of Pascal). The selected CTL-hydrogel showed biocompatibility and antioxidant activity in vitro, and it did not influence cytokines release by macrophages. Degradation studies carried out over 24 h pointed out its higher resistance to chemical degradation with respect to HA samples. Overall, this study underlines the advantages of the CTL-hydrogel to address the treatment of OA and shed light on an innovative application of CTL polymer, which is one of the main component of the proposed hydrogel system and not used in mixture with other molecules

    Estimate of the height of molten metal reactors for methane cracking

    Get PDF
    Methane Cracking represents one of the most promising routes to CO2-free hydrogen production.The methane decomposition reaction is typically carried out in fixed or fluidized catalytic beds, where the metal catalyst is supported on porous ceramic particles. By proper choice of the metal catalyst, the catalytic reaction environment allows to obtain sizeable reaction rates at operating temperatures as low as 700°C. Besides, in solid catalytic beds, the catalyst is swiftly deactivated due to the massive (i.e. stoichiometric) deposition of the solid carbon product. One way to bypass carbon deposition is to use a molten metal bath (which may or may not contain catalytic metal components) as a reaction environment, where methane bubbles are introduced at the bottom of the bath and are progressively converted as they rise through the liquid metal. The key point of this process is that, owing to a large density difference between the solid carbon phase and the molten metal, the solid product of the reaction floats on top of the liquid metal and can be thus mechanically skimmed. In this article, we develop an analytical approach to the estimate of the bath height, which constitutes one of the most critical design parameters of the process. Specifically, based on the observation that in practical applications the reacting bubble is in the kinetics-controlled regime, we obtain the conversion vs time solution for a bubble of given initial size. On the assumption of ideal gaseous mixture behaviour, the knowledge of the conversion curves allows to estimate the bubble diameter as a function of time during the rise of the bubble through the molten metal. This piece of information is then post-processed to obtain the bubble motion as a function of time. The elimination of the time parameter between the two solutions allows to construct a conversion-height map for different diameters of the bubbles

    Rheology of mixed alginate-hyaluronan aqueous solutions

    Get PDF
    The present manuscript addresses the description of binary systems of hyaluronan (HA) and alginate (Alg) in semi-concentrated solution. The two polysaccharides were completely miscible in the entire range of relative weight fraction explored at a total polymer concentration of up to 3 % (w/V). The rheological study encompassed steady flow and mechanical spectra for HA/Alg systems at different weight fractions with hyaluronan at different molecular weights. These extensive analyses allowed us to propose a model for the molecular arrangement in solution that envisages a mutual exclusion between the two polysaccharides even though a clear phase separation does not occur. This result may have profound implications when biomaterials based on the combination of alginate and hyaluronan are proposed in the field of biomedical materials

    The RIG-I agonist M8 triggers cell death and natural killer cell activation in human papillomavirus-associated cancer and potentiates cisplatin cytotoxicity

    Get PDF
    Although the activation of innate immunity to treat a wide variety of cancers is gaining increasing attention, it has been poorly investigated in human papillomavirus (HPV)-associated malignancies. Because these tumors harbor a severely impaired cGAS-STING axis, but they still retain a largely functional RIG-I pathway, another critical mediator of adaptive and innate immune responses, we asked whether RIG-I activation by the 5'ppp-RNA RIG-I agonist M8 would represent a therapeutically viable option to treat HPV+ cancers. Here, we show that M8 transfection of two cervical carcinoma-derived cell lines, CaSki and HeLa, both expressing a functional RIG-I, triggers intrinsic apoptotic cell death, which is significantly reduced in RIG-I KO cells. We also demonstrate that M8 stimulation potentiates cisplatin-mediated cell killing of HPV+ cells in a RIG-I dependent manner. This combination treatment is equally effective in reducing tumor growth in a syngeneic pre-clinical mouse model of HPV16-driven cancer, where enhanced expression of lymphocyte-recruiting chemokines and cytokines correlated with an increased number of activated natural killer (NK) cells in the tumor microenvironment. Consistent with a role of RIG-I signaling in immunogenic cell killing, stimulation of NK cells with conditioned medium from M8-transfected CaSki boosted NK cell proliferation, activation, and migration in a RIG-I-dependent tumor cell-intrinsic manner. Given the highly conserved molecular mechanisms of carcinogenesis and genomic features of HPV-driven cancers and the remarkably improved prognosis for HPV+ oropharyngeal cancer, targeting RIG-I may represent an effective immunotherapeutic strategy in this setting, favoring the development of de-escalating strategies

    Persistence of neutralizing antibodies to SARS-CoV-2 in first wave infected individuals at ten months post-infection: The UnIRSA cohort study

    Get PDF
    Longitudinal mapping of antibody-based SARS-CoV-2 immunity is critical for public health control of the pandemic and vaccine development. We performed a longitudinal analysis of the antibody-based immune response in a cohort of 100 COVID-19 individuals who were infected during the first wave of infection in northern Italy. The SARS-CoV-2 humoral response was tested using the COVID-SeroIndex, Kantaro Quantitative SARS-CoV-2 IgG Antibody RUO Kit (R&D Systems, Bio-Techne, Minneapolis, USA) and pseudotype-based neutralizing antibody assay. Using sequential serum samples collected from 100 COVID-19 recovered individuals from northern Italy—mostly with mild disease—at 2 and 10 months after their first positive PCR test, we show that 93% of them seroconverted at 2 months, with a geometric mean (GeoMean) half-maximal neutralization titer (NT50) of 387.9. Among the 35 unvaccinated subjects retested at 10 months, 7 resulted seronegative, with an 80% drop in seropositivity, while 28 showed decreased anti-receptor binding domain (RBD) and anti-spike (S) IgG titers, with a GeoMean NT50 neutralization titer dropping to 163.5. As an NT50 > 100 is known to confer protection from SARS-CoV-2 re-infection, our data show that the neutralizing activity elicited by the natural infection has lasted for at least 10 months in a large fraction of subjects

    Persistence of neutralizing antibodies to SARS-CoV-2 in first wave infected individuals at ten months post-infection: The UnIRSA cohort study

    Get PDF
    Longitudinal mapping of antibody-based SARS-CoV-2 immunity is critical for public health control of the pandemic and vaccine development. We performed a longitudinal analysis of the antibody-based immune response in a cohort of 100 COVID-19 individuals who were infected during the first wave of infection in northern Italy. The SARS-CoV-2 humoral response was tested using the COVID-SeroIndex, Kantaro Quantitative SARS-CoV-2 IgG Antibody RUO Kit (R&D Systems, Bio- Techne, Minneapolis, USA) and pseudotype-based neutralizing antibody assay. Using sequential serum samples collected from 100 COVID-19 recovered individuals from northern Italy—mostly with mild disease—at 2 and 10 months after their first positive PCR test, we show that 93% of them seroconverted at 2 months, with a geometric mean (GeoMean) half-maximal neutralization titer (NT50) of 387.9. Among the 35 unvaccinated subjects retested at 10 months, 7 resulted seronegative, with an 80% drop in seropositivity, while 28 showed decreased anti-receptor binding domain (RBD) and anti-spike (S) IgG titers, with a GeoMean NT50 neutralization titer dropping to 163.5. As an NT50 > 100 is known to confer protection from SARS-CoV-2 re-infection, our data show that the neutralizing activity elicited by the natural infection has lasted for at least 10 months in a large fraction of subjects

    Enhanced bioadhesivity of dopamine-functionalized polysaccharidic membranes for general surgery applications

    Get PDF
    An emerging strategy to improve adhesiveness of biomaterials in wet conditions takes inspiration from the adhesive features of marine mussel, which reside in the chemical reactivity of catechols. In this work, a catechol-bearing molecule (dopamine) was chemically grafted onto alginate to develop a polysaccharide-based membrane with improved adhesive properties. The dopamine-modified alginates were characterized by NMR, UV spectroscopy and in vitro biocompatibility. Mechanical tests and in vitro adhesion studies pointed out the effects of the grafted dopamine within the membranes. The release of HA from these resorbable membranes was shown to stimulate fibroblasts activities (in vitro). Finally, a preliminary in vivo test was performed to evaluate the adhesiveness of the membrane on porcine intestine (serosa). Overall, this functionalized membrane was shown to be biocompatible and to possess considerable adhesive properties owing to the presence of dopamine residues grafted on the alginate backbone
    • …
    corecore