1,976 research outputs found
Novel technique for monitoring the performance of the LAT instrument on board the GLAST satellite
The Gamma-ray Large Area Space Telescope (GLAST) is an observatory designed
to perform gamma-ray astronomy in the energy range 20 MeV to 300 GeV, with
supporting measurements for gamma-ray bursts from 10 keV to 25 MeV. GLAST will
be launched at the end of 2007, opening a new and important window on a wide
variety of high energy astrophysical phenomena . The main instrument of GLAST
is the Large Area Telescope (LAT), which provides break-through high-energy
measurements using techniques typically used in particle detectors for collider
experiments. The LAT consists of 16 identical towers in a four-by-four grid,
each one containing a pair conversion tracker and a hodoscopic crystal
calorimeter, all covered by a segmented plastic scintillator anti-coincidence
shield. The scientific return of the instrument depends very much on how
accurately we know its performance, and how well we can monitor it and correct
potential problems promptly. We report on a novel technique that we are
developing to help in the characterization and monitoring of LAT by using the
power of classification trees to pinpoint in a short time potential problems in
the recorded data. The same technique could also be used to evaluate the effect
on the overall LAT performance produced by potential instrumental problems.Comment: 2 pages, 1 figure, manuscript submitted on behalf of the GLAST/LAT
collaboration to First GLAST symposium proceeding
ASCR/HEP Exascale Requirements Review Report
This draft report summarizes and details the findings, results, and
recommendations derived from the ASCR/HEP Exascale Requirements Review meeting
held in June, 2015. The main conclusions are as follows. 1) Larger, more
capable computing and data facilities are needed to support HEP science goals
in all three frontiers: Energy, Intensity, and Cosmic. The expected scale of
the demand at the 2025 timescale is at least two orders of magnitude -- and in
some cases greater -- than that available currently. 2) The growth rate of data
produced by simulations is overwhelming the current ability, of both facilities
and researchers, to store and analyze it. Additional resources and new
techniques for data analysis are urgently needed. 3) Data rates and volumes
from HEP experimental facilities are also straining the ability to store and
analyze large and complex data volumes. Appropriately configured
leadership-class facilities can play a transformational role in enabling
scientific discovery from these datasets. 4) A close integration of HPC
simulation and data analysis will aid greatly in interpreting results from HEP
experiments. Such an integration will minimize data movement and facilitate
interdependent workflows. 5) Long-range planning between HEP and ASCR will be
required to meet HEP's research needs. To best use ASCR HPC resources the
experimental HEP program needs a) an established long-term plan for access to
ASCR computational and data resources, b) an ability to map workflows onto HPC
resources, c) the ability for ASCR facilities to accommodate workflows run by
collaborations that can have thousands of individual members, d) to transition
codes to the next-generation HPC platforms that will be available at ASCR
facilities, e) to build up and train a workforce capable of developing and
using simulations and analysis to support HEP scientific research on
next-generation systems.Comment: 77 pages, 13 Figures; draft report, subject to further revisio
Gamma-ray flaring activity from the gravitationally lensed blazar PKS 1830-211 observed by Fermi LAT
The Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope
routinely detects the highly dust-absorbed, reddened, and MeV-peaked flat
spectrum radio quasar PKS 1830-211 (z=2.507). Its apparent isotropic gamma-ray
luminosity (E>100 MeV) averaged over 3 years of observations and peaking
on 2010 October 14/15 at 2.9 X 10^{50} erg s^{-1}, makes it among the brightest
high-redshift Fermi blazars. No published model with a single lens can account
for all of the observed characteristics of this complex system. Based on radio
observations, one expects time delayed variability to follow about 25 days
after a primary flare, with flux about a factor 1.5 less. Two large gamma-ray
flares of PKS 1830-211 have been detected by the LAT in the considered period
and no substantial evidence for such a delayed activity was found. This allows
us to place a lower limit of about 6 on the gamma rays flux ratio between the
two lensed images. Swift XRT observations from a dedicated Target of
Opportunity program indicate a hard spectrum and with no significant
correlation of X-ray flux with the gamma-ray variability. The spectral energy
distribution can be modeled with inverse Compton scattering of thermal photons
from the dusty torus. The implications of the LAT data in terms of variability,
the lack of evident delayed flare events, and different radio and gamma-ray
flux ratios are discussed. Microlensing effects, absorption, size and location
of the emitting regions, the complex mass distribution of the system, an
energy-dependent inner structure of the source, and flux suppression by the
lens galaxy for one image path may be considered as hypotheses for
understanding our results.Comment: 14 pages, 6 figures, 2 tables. Accepted by the The Astrophysical
Journal. Corresponding authors: S. Ciprini (ASI ASDC & INAF OAR, Rome,
Italy), S. Buson (INAF Padova & Univ. of Padova, Padova, Italy), J. Finke
(NRL, Washington, DC, USA), F. D'Ammando (INAF IRA, Bologna, Italy
Fermi-LAT Study of Gamma-ray Emission in the Direction of Supernova Remnant W49B
We present an analysis of the gamma-ray data obtained with the Large Area
Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope in the direction of
SNR W49B (G43.3-0.2). A bright unresolved gamma-ray source detected at a
significance of 38 sigma is found to coincide with SNR W49B. The energy
spectrum in the 0.2-200 GeV range gradually steepens toward high energies. The
luminosity is estimated to be 1.5x10^{36} (D/8 kpc)^2 erg s^-1 in this energy
range. There is no indication that the gamma-ray emission comes from a pulsar.
Assuming that the SNR shell is the site of gamma-ray production, the observed
spectrum can be explained either by the decay of neutral pi mesons produced
through the proton-proton collisions or by electron bremsstrahlung. The
calculated energy density of relativistic particles responsible for the LAT
flux is estimated to be remarkably large, U_{e,p}>10^4 eV cm^-3, for either
gamma-ray production mechanism.Comment: 9 pages, 10 figure
Fermi LAT Search for Photon Lines from 30 to 200 GeV and Dark Matter Implications
Dark matter (DM) particle annihilation or decay can produce monochromatic
-rays readily distinguishable from astrophysical sources. -ray
line limits from 30 GeV to 200 GeV obtained from 11 months of Fermi Large Area
Space Telescope data from 20-300 GeV are presented using a selection based on
requirements for a -ray line analysis, and integrated over most of the
sky. We obtain -ray line flux upper limits in the range , and give corresponding DM annihilation
cross-section and decay lifetime limits. Theoretical implications are briefly
discussed.Comment: 6 pages, 1 figure. Accepted for publication by The Physical Review
Letter
Fermi-LAT observations of the exceptional gamma-ray outbursts of 3C 273 in September 2009
We present the light curves and spectral data of two exceptionally luminous
gamma-ray outburts observed by the Large Area Telescope (LAT) experiment on
board Fermi Gamma-ray Space Telescope from 3C 273 in September 2009. During
these flares, having a duration of a few days, the source reached its highest
gamma-ray flux ever measured. This allowed us to study in some details their
spectral and temporal structures. The rise and decay are asymmetric on
timescales of 6 hours, and the spectral index was significantly harder during
the flares than during the preceding 11 months. We also found that short, very
intense flares put out the same time-integrated energy as long, less intense
flares like that observed in August 2009.Comment: Corresponding authors: E. Massaro, [email protected]; G.
Tosti, [email protected]. 15 pages, 4 figures, published in The
Astrophysical Journal Letters, Volume 714, Issue 1, pp. L73-L78 (2010
Fermi LAT observations of the Geminga pulsar
We report on the \textit{Fermi}-LAT observations of the Geminga pulsar, the
second brightest non-variable GeV source in the -ray sky and the first
example of a radio-quiet -ray pulsar. The observations cover one year,
from the launch of the satellite through 2009 June 15. A data sample of
over 60,000 photons enabled us to build a timing solution based solely on
rays. Timing analysis shows two prominent peaks, separated by = 0.497 0.004 in phase, which narrow with increasing energy. Pulsed
rays are observed beyond 18 GeV, precluding emission below 2.7 stellar
radii because of magnetic absorption. The phase-averaged spectrum was fitted
with a power law with exponential cut-off of spectral index = (1.30
0.01 0.04), cut-off energy = (2.46 0.04 0.17)
GeV and an integral photon flux above 0.1 GeV of (4.14 0.02 0.32)
10 cm s. The first uncertainties are statistical
and the second are systematic. The phase-resolved spectroscopy shows a clear
evolution of the spectral parameters, with the spectral index reaching a
minimum value just before the leading peak and the cut-off energy having maxima
around the peaks. Phase-resolved spectroscopy reveals that pulsar emission is
present at all rotational phases. The spectral shape, broad pulse profile, and
maximum photon energy favor the outer magnetospheric emission scenarios.Comment: 32 pages, 12 figures, 3 tables. Accepted for publication in The
Astrophysical Journal. Corresponding authors: Denis Dumora
([email protected]), Fabio Gargano ([email protected]),
Massimiliano Razzano ([email protected]
Discovery of Pulsed -rays from PSR J0034-0534 with the Fermi LAT: A Case for Co-located Radio and -ray Emission Regions
Millisecond pulsars (MSPs) have been firmly established as a class of
gamma-ray emitters via the detection of pulsations above 0.1 GeV from eight
MSPs by the Fermi Large Area Telescope (LAT). Using thirteen months of LAT data
significant gamma-ray pulsations at the radio period have been detected from
the MSP PSR J0034-0534, making it the ninth clear MSP detection by the LAT. The
gamma-ray light curve shows two peaks separated by 0.2740.015 in phase
which are very nearly aligned with the radio peaks, a phenomenon seen only in
the Crab pulsar until now. The 0.1 GeV spectrum of this pulsar is well
fit by an exponentially cutoff power law with a cutoff energy of 1.80.1 GeV and a photon index of 1.50.1, first errors are
statistical and second are systematic. The near-alignment of the radio and
gamma-ray peaks strongly suggests that the radio and gamma-ray emission regions
are co-located and both are the result of caustic formation.Comment: 20 pages, 3 figures, 2 tables. Accepted for publication in Ap
Fermi LAT observations of cosmic-ray electrons from 7 GeV to 1 TeV
We present the results of our analysis of cosmic-ray electrons using about 8
million electron candidates detected in the first 12 months on-orbit by the
Fermi Large Area Telescope. This work extends our previously-published
cosmic-ray electron spectrum down to 7 GeV, giving a spectral range of
approximately 2.5 decades up to 1 TeV. We describe in detail the analysis and
its validation using beam-test and on-orbit data. In addition, we describe the
spectrum measured via a subset of events selected for the best energy
resolution as a cross-check on the measurement using the full event sample. Our
electron spectrum can be described with a power law with no prominent spectral features within systematic uncertainties.
Within the limits of our uncertainties, we can accommodate a slight spectral
hardening at around 100 GeV and a slight softening above 500 GeV.Comment: 20 pages, 23 figures, 2 tables, published in Physical Review D 82,
092004 (2010) - contact authors: C. Sgro', A. Moisee
- …
