9 research outputs found
Right ventricular adaptation in congenital heart diseases
In the last four decades, enormous progress has been made in the treatment of congenital heart diseases (CHD); most patients now survive into adulthood, albeit with residual lesions. As a consequence, the focus has shifted from initial treatment to long-term morbidity and mortality. An important predictor for long-term outcome is right ventricular (RV) dysfunction, but knowledge on the mechanisms of RV adaptation and dysfunction is still scarce. This review will summarize the main features of RV adaptation to CHD, focusing on recent knowledge obtained in experimental models of the most prevalent abnormal loading conditions, i.e., pressure load and volume load. Models of increased pressure load for the RV have shown a similar pattern of responses, i.e., increased contractility, RV dilatation and hypertrophy. Evidence is accumulating that RV failure in response to increased pressure load is marked by progressive diastolic dysfunction. The mechanisms of this progressive dysfunction are insufficiently known. The RV response to pressure load shares similarities with that of the LV, but also has specific features, e.g., capillary rarefaction, oxidative stress and inflammation. The contribution of these pathways to the development of failure needs further exploration. The RV adaptation to increased volume load is an understudied area, but becomes increasingly important in the growing groups of survivors of CHD, especially with tetralogy of Fallot. Recently developed animal models may add to the investigation of the mechanisms of RV adaptation and failure, leading to the development of new RV-specific therapies.</p
Right ventricular adaptation in congenital heart diseases
In the last four decades, enormous progress has been made in the treatment of congenital heart diseases (CHD); most patients now survive into adulthood, albeit with residual lesions. As a consequence, the focus has shifted from initial treatment to long-term morbidity and mortality. An important predictor for long-term outcome is right ventricular (RV) dysfunction, but knowledge on the mechanisms of RV adaptation and dysfunction is still scarce. This review will summarize the main features of RV adaptation to CHD, focusing on recent knowledge obtained in experimental models of the most prevalent abnormal loading conditions, i.e., pressure load and volume load. Models of increased pressure load for the RV have shown a similar pattern of responses, i.e., increased contractility, RV dilatation and hypertrophy. Evidence is accumulating that RV failure in response to increased pressure load is marked by progressive diastolic dysfunction. The mechanisms of this progressive dysfunction are insufficiently known. The RV response to pressure load shares similarities with that of the LV, but also has specific features, e.g., capillary rarefaction, oxidative stress and inflammation. The contribution of these pathways to the development of failure needs further exploration. The RV adaptation to increased volume load is an understudied area, but becomes increasingly important in the growing groups of survivors of CHD, especially with tetralogy of Fallot. Recently developed animal models may add to the investigation of the mechanisms of RV adaptation and failure, leading to the development of new RV-specific therapies.</p
Neuregulin-1 enhances cell-cycle activity, delays cardiac fibrosis, and improves cardiac performance in rat pups with right ventricular pressure load
Objectives: Right ventricular (RV) failure is a leading cause of death in patients with congenital heart disease. RV failure is kept at bay during childhood. Limited proliferation of cardiomyocytes is present in the postnatal heart. We propose that cardiomyocyte proliferation improves RV adaptation to pressure load (PL). We studied adaptation in response to increased RV PL and the role of increased cardiomyocyte cell cycle activity (CCA) in rat pups growing into adulthood. Methods: We induced RV PL at day of weaning in rats (3 weeks; 30-40 g) by pulmonary artery banding and followed rats into adulthood (300 g). We performed histological analyses and RNA sequencing analysis. To study the effects of increased cardiomyocyte cell cycle activity, we administered neuregulin-1 (NRG1), a growth factor involved in cardiac development. Results: PL induced an increase in CCA, with subsequent decline of CCA (sham/PL at 4 weeks: 0.14%/0.83%; P = .04 and 8 weeks: 0.00%/0.00%; P = .484) and cardiac function (cardiac index: control/PL 4 weeks: 4.41/3.29; P = .468 and 8 weeks: 3.57/1.44; P = .024). RNA sequencing analysis revealed delayed maturation and increased CCA pathways. NRG1 stimulated CCA (PL vehicle/NRG1 at 2 weeks: 0.62%/2.28%; P = .003), improved cardiac function (cardiac index control vs vehicle/NRG1 at 2 weeks: 4.21 vs 3.07/4.17; P = .009/.705) and postponed fibrosis (control vs vehicle/NRG1 at 4 weeks: 1.66 vs 4.82%/2.97%; P = .009/.078) in RV PL rats during childhood. Conclusions: RV PL during growth induces a transient CCA increase. Further CCA stimulation improves cardiac function and delays fibrosis. This proof-of-concept study shows that stimulation of CCA can improve RV adaptation to PL in the postnatal developing heart and might provide a new approach to preserve RV function in patients with congenital heart disease.</p
Neuregulin-1 enhances cell-cycle activity, delays cardiac fibrosis, and improves cardiac performance in rat pups with right ventricular pressure load
Objectives: Right ventricular (RV) failure is a leading cause of death in patients with congenital heart disease. RV failure is kept at bay during childhood. Limited proliferation of cardiomyocytes is present in the postnatal heart. We propose that cardiomyocyte proliferation improves RV adaptation to pressure load (PL). We studied adaptation in response to increased RV PL and the role of increased cardiomyocyte cell cycle activity (CCA) in rat pups growing into adulthood. Methods: We induced RV PL at day of weaning in rats (3 weeks; 30-40 g) by pulmonary artery banding and followed rats into adulthood (300 g). We performed histological analyses and RNA sequencing analysis. To study the effects of increased cardiomyocyte cell cycle activity, we administered neuregulin-1 (NRG1), a growth factor involved in cardiac development. Results: PL induced an increase in CCA, with subsequent decline of CCA (sham/PL at 4 weeks: 0.14%/0.83%; P = .04 and 8 weeks: 0.00%/0.00%; P = .484) and cardiac function (cardiac index: control/PL 4 weeks: 4.41/3.29; P = .468 and 8 weeks: 3.57/1.44; P = .024). RNA sequencing analysis revealed delayed maturation and increased CCA pathways. NRG1 stimulated CCA (PL vehicle/NRG1 at 2 weeks: 0.62%/2.28%; P = .003), improved cardiac function (cardiac index control vs vehicle/NRG1 at 2 weeks: 4.21 vs 3.07/4.17; P = .009/.705) and postponed fibrosis (control vs vehicle/NRG1 at 4 weeks: 1.66 vs 4.82%/2.97%; P = .009/.078) in RV PL rats during childhood. Conclusions: RV PL during growth induces a transient CCA increase. Further CCA stimulation improves cardiac function and delays fibrosis. This proof-of-concept study shows that stimulation of CCA can improve RV adaptation to PL in the postnatal developing heart and might provide a new approach to preserve RV function in patients with congenital heart disease.</p